

Tipifarnib in Relapsed or Refractory Angioimmunoblastic T-cell Lymphoma (AITL) and CXCL12+ Peripheral T-cell Lymphoma (PTCL): Preliminary Results from an Open-Label, Phase 2 Study

Thomas Witzig¹, Lubomir Sokol², Won Seog Kim³, Francine Foss⁴, Eric Jacobsen⁵, Fatima de la Cruz Vicente⁶, Dolores Caballero⁷, Ranjana Advani⁸, Jose Maria Roncero Vidal⁹, Ana Marin Niebla¹⁰, Antonia Rodriguez Izquierdo¹¹, Raquel Oña Navarrete¹², Maria Jose Terol¹³, Eva Domingo-Domenech¹⁴, Marta Rodriguez¹⁵, Miguel Piris¹⁵, James Bolognese¹⁶, Matthew R Janes¹⁷, Francis Burrows¹⁸, Linda Kessler¹⁸, Vishnu Mishra¹⁸, Robert Curry¹⁹, Michael Kurman¹⁹, Catherine Scholz¹⁹ and Antonio Gualberto¹⁹

¹Mayo Clinic, Rochester, MN USA
²H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL USA
³Samsung Medical Center, Seoul, South Korea
⁴Yale University School of Medicine, New Haven, CT USA
⁵Dana-Farber Cancer Institute, Boston, MA USA
⁶Hospital Universitario Virgen del Rocío, Sevilla, Spain
⁷Hospital Universitario de Salamanca, Salamanca, Spain
⁸Stanford University Medical Center, Stanford, CA USA
⁹Institut Català d'Oncologia, Girona, Spain
¹⁰Vall D'Hebron Institute of Oncology, Barcelona, Spain

¹¹ Hospital Universitario 12 de Octubre, Madrid, Spain

- ¹² MD Anderson Cancer Center, Madrid, Spain
- ¹³ Hospital Clinico Universitario de Valencia, Valencia, Spain
- ¹⁴ Institut Catala d'Oncologia, Barcelona, Spain
- ¹⁵ Fundación Jiménez Díaz, Madrid, Spain
- ¹⁶ Cytel, Cambridge, MA USA
- ¹⁷ Wellspring Biosciences, Inc., San Diego, CA USA
- ¹⁸ Kura Oncology, Inc., San Diego, CA USA
- ¹⁹ Kura Oncology, Inc., Cambridge, MA USA

Disclosures

- Clinical Trials Support to conduct the trials: Acerta, Celgene, Kura Oncology, Spectrum
- Advisory Boards (personally uncompensated): Incyte, Seattle Genetics, Abbvie, Morphosys, Spectrum, Celgene
- Advisory Boards (personally compensated): Immune Design, Karyopharm, Epizyme (April 2019)

Tipifarnib is a Farnesyltransferase (FT) Inhibitor

- FT adds a 15 carbon farnesyl group to proteins with CAAX motif
 - C = cysteine; A = aliphatic a.a. X= determines which enzyme does the prenylation
- Tipifarnib is an oral FTI that has been tested in >5000 unselected patients with a variety of solid and blood cancers
- Studies in lymphoma 2004-2008
 - Blood. 2011;118(18): 4872-4881
 - Blood. 2011; 118(18):4882-4889

Cytotoxicity of farnesyltransferase inhibitors in lymphoid cells mediated by MAPK pathway inhibition and Bim up-regulation

Husheng Ding,¹ Jennifer Hackbarth,¹ Paula A. Schneider,¹ Kevin L. Peterson,¹ X. Wei Meng,¹ Haiming Dai,¹ Thomas E. Witzig,² and Scott H. Kaufmann^{1,2}

Divisions of ¹Oncology Research and ²Hematology, Mayo Clinic College of Medicine, Rochester, MN

Multi-institutional phase 2 study of the farnesyltransferase inhibitor tipifarnib (R115777) in patients with relapsed and refractory lymphomas

Thomas E. Witzig,¹ Hui Tang,² Ivana N. M. Micallef,¹ Stephen M. Ansell,¹ Brian K. Link,³ David J. Inwards,¹ Luis F. Porrata,¹ Patrick B. Johnston,¹ Joseph P. Colgan,¹ Svetomir N. Markovic,¹ Grzegorz S. Nowakowski,¹ Carrie A. Thompson,¹ Cristine Allmer,² Matthew J. Maurer,² Mamta Gupta,¹ George Weiner,³ Ray Hohl,³ Paul J. Kurtin,⁴ Husheng Ding,⁵ David Loegering,⁵ Paula Schneider,⁵ Kevin Peterson,⁵ Thomas M. Habermann,¹ and Scott H. Kaufmann^{1,5}

ORR in all 93 patients = 20%

NCT00082888; LS038B Iowa/Mayo SPORE trial

Goals of this Presentation

- To review preliminary data from a new ongoing phase 2 study (KO-TIP-002) of single-agent tipifarnib
 - Drug in-licensed to Kura Oncology from Janssen/Johnson & Johnson
 - Single-agent tipifarnib at two different schedules:
 - 300 mg po bid days 1-21 q28 days
 - 600 900 mg po bid days 1-7 and days 15-21 q28 days
- Demonstrate how biomarkers learned from unselected pts can be used prospectively to select patients and enrich the ORR.
 - CXCL12 and its receptor CXCR4
 - KIR3DL2 mutations

Tipifarnib is a CXCL12/CXCR4 Pathway Inhibitor

- Key characteristics of CXCL12
 - CXCL12 and its receptors (CXCR4, CXCR7) are key factors linking cancer cells with the tumor microenvironment
- High CXCL12 expression defines poor prognosis in PTCL
 - 50% of AITL and 35% of PTCL-NOS have high CXCL12 expression
 - Trend for worse prognosis in AITL and PTCL-NOS patients with tumors with high CXCL12 expression¹
- Tipifarnib is a CXCL12/CXCR4 pathway inhibitor
 - Tipifarnib downregulates CXCL12 secretion ex-vivo in stroma cultures
 - Expression of uniquely farnesylated proteins (RHOE and PRICKLE2) is strongly correlated with CXCL12 expression, suggesting potential CXCL12-related tipifarnib targets²
- Resistance to tipifarnib potentially mediated by CXCR2 and its ligand CXCL5³

Trend for poor prognosis with high CXCL12 expression (adjusted to CXCR4) in AITL and PTCL NOS pts

Tipifarnib downregulates the secretion of CXCL12 exvivo in CD1 mouse bone marrow cultures

¹ Witzig 2018 Blood 132:2937 | ² Gualberto EHA 2019 #PS1002 | ³ Gualberto Blood 2017 130:3957

Study Design of KO-TIP-002¹

Protocol Stages 1 and 2

- Unselected R/R PTCL, including AITL and PTCL-NOS
- Tipifarnib 600 900 mg orally (po) twice daily (bid) on days 1-7 and days 15-21 every 28 days
- **Results²:** Primary objective not met. Only 3 of the 4 responses needed were observed in first unselected 19 patients.
- Biomarker Analysis:
- Antitumor activity (PR, SD) observed in AITL and PTCL-NOS pts with high levels of tumor CXCL12 gene expression in retrospective analyses.
- High CXCL12 expression correlated with wild type CXCL12
 3'UTR gene sequences.

The rs2839695 A>G Variant in the 3'UTR CXCL12 observed in pts that progressed.

rs2839695 A>G lowers CXCL12 expression; is present in stromal cells and is detectable in buccal swabs

Wild type (wt) CXCL12 3'UTR Cohort (N=12)

- R/R PTCL, ≥ 1 prior therapy, measurable disease, ECOG 0-2; AITL pts could be enrolled once the AITL cohort enrollment was complete.
- wt CXCL12 3'UTR defined by PCR of the rs2839695 locus in buccal swabs
- Tipifarnib 300 mg po bid on days 1-21 every 28 days
- Hypothesis: If ≥ 2 responses observed, 89% probability that the true response rate is at least 10%.

AITL Cohort (N=12)

- R/R AITL, \geq 1 prior therapy, measurable disease, ECOG 0-2
- Tipifarnib 300 mg po bid on days 1-21 every 28 days
- Hypothesis: If ≥ 4 responses observed, 82.6% probability that the true response rate is at least 30%.

¹ NCT02464228, KO-TIP-002 | ² Witzig 2017 *Hematol Oncol* 35(S2): 251–2

Patient Demographics for Ongoing KO-TIP-002

	wt CXCL12 3'UTR Cohort ¹	AITL Cohort
Total Patients Treated, n (%)	15 (100)	16 (100)
Total Evaluable for Efficacy ² , n (%)	12 (80.0)	11 (68.8)
Histology		
AITL, n (%)	4 (26.7)	16 (100)
PTCL-NOS, n (%)	11 (73.3)	0
Other, n (%)	0	0
Age, yrs		
Median	65.2	66.9
Min, Max	38, 80	45, 87
Male, n (%)	9 (60.0)	11 (68.8)
Female, n (%)	6 (40.0)	5 (31.2)
Number of Prior Anti-Cancer Regimens		
Median	3	3
Min, Max	1, 8	1, 7
Prior Auto BMT ³ , n (%)	6 (40.0)	7 (43.8)

¹ Subjects have wild type CXCL12 rs2839695 A/A genotype determined by PCR of buccal swabs. Subjects with rs2839695 A/G and G/G were excluded.

² To be evaluable for efficacy, eligible pt must have received at least 1 dose of tipifarnib and have at least 1 post baseline tumor response assessment

³ One pt with unknown transplant type

Preliminary data as of 24 May 2019

Proof of Concept for Tipifarnib in wt CXCL12 3'UTR PTCL

	wt CXCL12 3'UTR Cohort: All patients		wt CXCL12 3'UTR Cohort: PTCL-NOS		Variant CXCL12 3'UTR PTCL-NOS enrolled in S1/2		
Total treated	· · · · · · · · · · · · · · · · · · ·	15		11	6		
Total efficacy evaluable		12		9	6		
Overall Best Response		0					
Complete Response (CR)	3			1	-		
Partial Response (PR)	2			2	-		
Stable Disease (SD)	6			6	-		
Progressive Disease (PD)	1			-	6		
Not efficacy evaluable (NE)	3			2	_		
	PPS ¹	mITT	PPS ¹	mITT	PPS/mITT		
Overall Response Rate (CR + PR)	41.7%	33.3%	33.3%	27.3%	0%		
95% CI	18.1 – 70.6	14.2 - 60.6	9.8 - 68.4	7.9 - 59.9	0 - 40.6		
Clinical Benefit Rate (CR + PR + SD)	91.7%	73.3%	100%	81.8%	Enrichment of activity by wt CXCL12 3'UTR		
95% CI	63.4 - 99.6	46.5 - 90.3	68.4 - 100.0	50.0 - 96.7			

¹ Per protocol set – prespecified primary analysis population includes all pts who received at least 1 dose of tipifarnib and have 1 post-baseline tumor measurement

Preliminary data as of 24 May 2019

Tumor Reduction in PTCL-NOS, wt CXCL12 3'UTR

Baseline

End of Cycle 2

- 77 yo; PTCL-NOS Stage IV
- CHOP x 5 with response then PROG biopsy-proven PTCL relapse in multiple skin nodules
- Rapid PR after two cycles of tipifarnib

Proof of Concept for Tipifarnib in AITL

	AITL Cohort			All AITL in KO-TIP-002 ¹	
Total treated	16		- [23	
Total efficacy evaluable	11			17	7
Overall Deat Dean and a			ł		
Overall Best Response			- 1.		
Complete Response (CR)	3			5	
Partial Response (PR)	2			4	
Stable Disease (SD)	3			3	
Progressive Disease (PD)	3			5	
Not efficacy evaluable (NE)	5			6	
	PPS ²	mITT		PPS ²	mITT
Overall Response Rate (CR + PR)	45.4%	31.3%		52.9%	39.1%
95% CI	20.0 - 74.4	13.2 - 56.6		28.2 - 74.7	20.7 - 61.3
Clinical Benefit Rate (CR + PR + SD)	72.7%	50.0%		70.6%	52.2%
95% CI	40.1 - 92.1	27.2 - 72.8		45.6 - 87.6	32.0 - 72.6

¹ All AITL includes all AITL pts enrolled in all portions of the trial: original protocol (stages 1 and 2), AITL cohort and wt CXCL12 3'UTR cohort.

² Per protocol set – prespecified primary analysis population includes all pts who received at least 1 dose of tipifarnib and have 1 post-baseline tumor measurement.

Preliminary data as of 24 May 2019

AITL: Tipifarnib treatment resulted in durable clinical responses and enabled subsequent transplant in patients achieving a CR

Maximum Change in Tumor Burden

Time on Treatment

Preliminary data as of 24 May 2019

Tipifarnib is Active in High CXCL12 Expressing AITL and PTCL NOS Tumors

High Activity of Tipifarnib in AITL with KIR3DL2 mutations

	KIR3DL2 Mutant	KIR3DL2 Wild Type		
Ν	8	8		
Overall Best Response				
Complete Response (CR)	4	-		
Partial Response (PR)	2	2		
Stable Disease (SD)	2	-		
Progressive Disease (PD)	-	6		
Not evaluable (NE)	-	-		
Overall Response Rate (CR + PR)	75%	25%		
95% CI	35.9 - 95.4	4.6 - 64.1		
Clinical Benefit Rate (CR + PR + SD)	100%	25%		
95% CI	64.1 - 100.0	4.6 - 64.1		

Best Response to Tipifarnib (N=16 AITL with sequenced tumors)

KIR data analyses to be presented at 15-ICML: Gualberto et. al. Abstract 156-P

Preliminary data as of 24 May 2019

KIRs

Killer-cell immunoglobulin-like receptors (KIRs) are transmembrane glycoproteins expressed in NK and T cells that play key regulatory functions, including the control of chemokine/cytokine release and angiogenesis.

See poster at this meeting by A. Gualberto et al Abstract 156-P

Drivers of Tipifarnib's Activity

High CXCL12 expression, Low CXCL5 expression confer high clinical activity

AITL Genetics

Mechanism of Action

High CXCL12 expression in AITL histology Tipifarnib downregulates CXCL12 secretion High CXCL12 in subjects with wt CXCL12 3'UTR Histology CXCL12 3'UTR 100000 **CXCL12 RNA Seq Counts** 100000 **DMSO** Tipifarnib - AITL Seq Counts Reference (wt) -- NOS (control) 100nM -- Variant pos. control 10000 ... 10000 **CXCL12 RNA** 1000 1000 CXCL12 . . neg. control AITL KIR3DL2wt CD1 mouse bone marrow cultures + PTCL NOS 100 100 Low CXCL5 expression in KIR3DL2 mutant AITL Tipifarnib does not inhibit CXCL5 secretion Low CXCL5 expression in NOS KIR3DL2 wild type Histology 10000 1000 KIR3DL2 C336R/Q386E **CXCL5 RNA Seq Counts DMSO** Tipifarnib + AITL --- NOS (control) 100nM 1000 100 CXCL5 100 10 Low CXCL5 10 mediated resistance .. **HUVEC** cultures CXCR1 CXCR2 CXCL5 CXCL5

N= 32 AITL/NOS cases with response, NGS and RNA Seq data

PTCL-NOS Genetics

Conclusions

- The AITL and wt CXCL12 3'UTR cohorts met pre-specified statistical hypotheses supporting proof-of-concept for tipifarnib in PTCL.
- Tipifarnib is active in AITL pts and in PTCL-NOS pts with wt CXCL12 3'UTR
 - AITL: 53% ORR (all subjects, PPS)
 - PTCL-NOS with wt CXCL12 3'UTR: 33.3% ORR (all subjects, PPS).
- KIR3DL2 and CXCL12 genotype provide robust tools for the selection/stratification of patients:
 - CXCL12 genotype may enrich for CXCL12 expression and tipifarnib activity, particularly in PTCL-NOS (86.7% Clinical Benefit Rate for PTCL-NOS patients with wt CXCL12 3'UTR).
 - KIR3DL2 C336R/Q383E mutations may enrich for low CXCL5 expression and anti-tumor activity in AITL (75% ORR, 50% CR rate).
 - Approximately 50% of AITL carry KIR3DL2 mutations and 70% of PTCL carry reference (wild type) CXCL12 3'UTR rs2839695 sequences.
- TEAEs were consistent with the known safety profile of tipifarnib.
 - Treatment with tipifarnib 300 mg bid days 1-21 every 28-days was generally well tolerated. The majority of Grade ≥ 3
 TEAEs were hematological events managed with best supportive care.
- These results suggest that further evaluation of tipifarnib in biomarker defined subsets of PTCL and CTCL would be of interest.

Acknowledgements

- Patients, their families and caregivers
- Study Investigators and their study teams
- Kura Oncology