A Phase 1/2 trial to evaluate the safety and antitumor activity of tipifarnib and alpelisib for patients with HRAS-overexpressing and/or PIK3CA-mutated/amplified recurrent/metastatic head and neck squamous cell carcinoma (The KURRENT Trial)

Glenn J. Hanna¹, Cesar A. Perez², Alan Ho³, Maura Gillison⁴, Douglas Adkins⁵, Ashley Dayoub⁶, Andrew Saunders⁶, Mollie Leoni⁶, Stephen Dale⁶, Kun Nie⁶, Alex Dmitrienko⁷

¹ Dana-Farber Cancer Institute, Boston, MA USA, ² Sarah Cannon at Florida Center, Orlando, FL USA, ³ Memorial Sloan Kettering Cancer Center, Houston, TX, USA, ⁵ Washington University, St. Louis, MO, USA, ⁶ Kura Oncology, Inc., Boston, MA USA, ⁷ Mediana, LLC, USA

BACKGROUND

Study Design

All participants followed for survival status after coming off

trial intervention for any reason

Efficacy Assessments from Cycle 2 to Cycle 25

Year 2

Tumor assessment

every 12 weeks

 $(C14 \rightarrow C25)$

Cycles 14-26

- HRAS mutation/overexpression and PIK3CA mutations and/or amplifications occur in up to 50% of mutations in head and neck squamous cell carcinoma (HNSCC)¹.
- HRAS preferentially activates PI3K 5-fold more efficiently than KRAS².
- Furthermore, mutant HRAS requires PI3K for oncogenic activity³, while PI3K requires RAS to drive tumor biology ⁴.
- Thus, understanding the interdependencies of key cellular pathways may be particularly important in designing combination regimens for HNSCC.
- Preclinical data is supportive of the combination; enhanced activity observed in both HRAS mutant/overexpressed and PIK3CA mutant/amplified populations of HNSCC.
- This Phase 1/2, open-label, 2-drug dose escalation trial will evaluate the safety of the combination of tipifarnib (a potent, selective inhibitor of farnesyltransferase, a critical enzyme required for HRAS activity²) and alpelisib (an inhibitor of PI3Ka) and assess early antitumor activity in adult patients with HNSCC.

Year 1

Tumor assessment at

Week 4, and then

every 8 weeks

 $(C2 \rightarrow C13)$

Screening

Study

eligibility can

last up to 28-

days before

C1D1

C1D1

Total Enrollment, N=40 Cohort 1 (N=20) Cohort 2 (N=20) Tumors with PI3KCA mutations/amplifications* Tumors with HRAS overexpression**

Initial Dose Regimen*

Simultaneous Dosing: 28 Day Cycle			
Week 1	Week 2	Week 3	Week 4
600 mg (300 mg BID) Tipifarnib	Rest	600 mg (300 mg BID) Tipifarnib	Rest
200 mg QAM Alpelisib	200 mg QAM Alpelisib	200 mg QAM Alpelisib	200 mg QAM Alpelisib

Abbreviations: BID = twice daily: QAM = once each morning *Doses may be escalated. Alpelisib: 250, 300 mg; Tipifarnib: 900, 1200 mg, total daily doses

The Optimal Biologically Active Dose (OBAD) will be determined using an adaptive dose escalation design (based on Bayesian logistic regression model) while maintaining a dose limiting toxicity (DLT) rate <33%.

PRAS40

4EBP1

tipifarnib

Age ≥18 years

Key Inclusion Criteria

Key Exclusion Criteria

histologies

- Histologically confirmed HNSCC not amenable to local therapy with curative intent
- Documented treatment failure from at least one prior therapy in the R/M setting

• Salivary gland, thyroid, (primary) cutaneous squamous or non-squamous

- Tumors with HRAS overexpression and/or PIK3CA mutation and/or amplification
- Measurable disease by RECIST v1.1

End of study is

defined as:1-year fromC1D1 of thelast studyparticipant

enrolled.

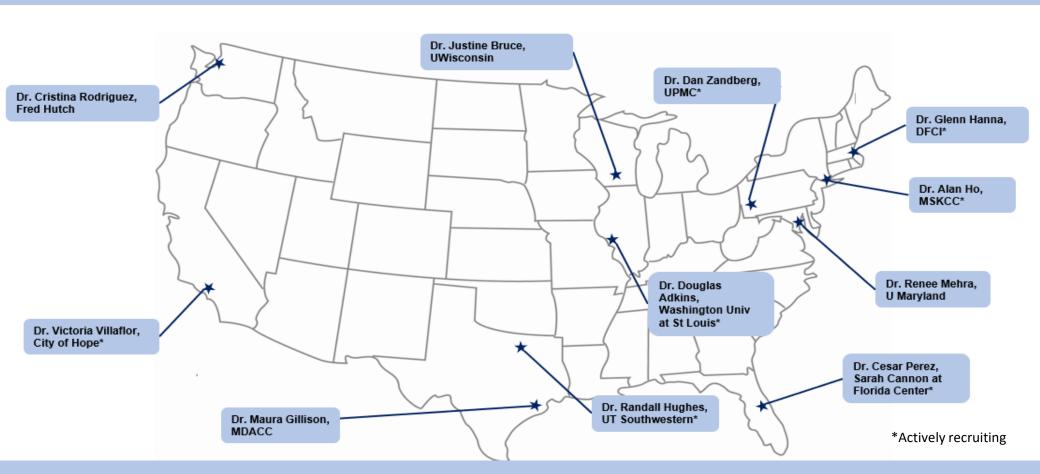
End of Study

Trial duration

to be ~2-years.

is estimated

- Prior treatment (at least 1 full treatment cycle) with a FTI, PI3K, mTOR, or AKT inhibitor
 - Last dose of any prior checkpoint inhibitor therapy must have been administered at least 2 weeks prior to Cycle 1 Day 1
 - Intolerable Grade 2, or ≥ Grade 3 neuropathy or evidence of unstable neurological symptoms within 4 weeks of Cycle 1 Day 1


Primary Objective:

- Determine the recommended dose and regimen
- Evaluate the safety and tolerability of tipifarnib and alpelisib in combination

Secondary Objectives:

- Overall response rate (ORR) and disease control rate (DCR)
- Pharmacokinetics of tipifarnib and alpelisib in combination
- Anti-tumor activity in terms of PFS and rate of PFS at 6-months
- Estimate the OS and rate of OS at 12-months

Participating Sites:

<u>Status</u>: The trial opened for enrollment in October 2021 and is currently enrolling.

Study Contacts: Phone: 617-588-3755

E-mail: KO-TIP-013@kuraoncology.com

ClinicalTrials.gov identifier: NCT04997902

REFERENCES

¹TCGA Data

²Yan J, Roy S, Apolloni A, Lane A, et al. Ras isoforms vary in their ability to activate Raf-1 and phosphoinositide 3-kinase. J Biol Chem. 1998. 273: 24052-6.

³Gupta S, Ramjaun AR, Haiko P, Wang Y, et al. Binding of ras to phosphoinositide 3-kinase p110alpha is required for ras-driven tumorigenesis in mice. Cell. 2007.129: 957-68.

⁴Zhao L, Vogt PK. Class I PI3K in oncogenic cellular transformation. Oncogene. 2008. 27: 5486-96.

Abbreviations: Cx = Cycle x; CxDy = Cycle x Day y; DLT = dose-limiting toxicity

Cycles 1-13