

Proof of Concept for Tipifarnib in Relapsed or Refractory Angioimmunoblastic T- Cell Lymphoma (AITL) and CXCL12+ Peripheral T-Cell Lymphoma (PTCL): Preliminary Results from an Open-Label, Phase 2 Study

Thomas E. Witzig¹, Lubomir Sokol², Francine M. Foss³, Won-Seog Kim⁴, Eric Jacobsen⁵, Maria de Fatima De La Cruz⁶, Dolores Caballero⁷, Ranjana Advani⁸, Jose Maria Roncero⁹, Raquel de Oña¹⁰, Ana Marin Niebla¹¹, Antonia Rodriguez Izquierdo¹², Maria Jose Terol¹³, Eva Domingo-Domenech¹⁴, Miguel A. Piris¹⁵, Marta Rodriguez¹⁶, James Bolognese¹⁷, Linda Kessler¹⁸, Vishnu Mishra¹⁸, Robert Curry¹⁹, Michael Kurman¹⁹, Catherine Scholz¹⁹, and Antonio Gualberto¹⁹

¹ Mayo Clinic, Rochester, MN USA
² H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL USA
³ Yale University School of Medicine, New Haven, CT USA
⁴ Samsung Medical Center, Seoul, South Korea
⁵ Dana-Farber Cancer Institute, Boston, MA USA
⁶ Hospital Universitario Virgen del Rocío, Sevilla, Spain
⁷ Hospital Universitario de Salamanca, Salamanca, Spain
⁸ Stanford University Medical Center, Stanford, CA USA
⁹ Institut Català d'Oncologia, Girona, Spain
¹⁰ MD Anderson Cancer Center, Madrid, Spain

¹¹ Vall D'Hebron Institute of Oncology, Barcelona, Spain

- ¹² Hospital Universitario 12 de Octubre, Madrid, Spain
- ¹³ Hospital Clinico Universitario de Valencia, Valencia, Spain
- ¹⁴ Institut Catala d'Oncologia, Barcelona, Spain
- ¹⁵ Fundación Jiménez Díaz, Madrid, Spain
- ¹⁶ Pathology, Fundacion Jimenez Diaz, Madrid, Spain
- ¹⁷ Cytel, Cambridge, MA, USA
- ¹⁸ Kura Oncology, Inc., San Diego, CA, USA
- ¹⁹ Kura Oncology, Inc., Cambridge, MA, USA

Tipifarnib is a Farnesyltransferase (FT) Inhibitor

- FT adds a 15 Carbon farnesyl group to proteins with CaaX motif
 - C = cysteine; A = aliphatic a.a. X= determines which enzyme does the prenylation
- Tipifarnib is an oral FTI that has been tested in >5000 unselected patients with a variety of solid and blood cancers
- Studies in lymphoma 2004-2008
 - Blood. 2011;118(18): 4872-4881
 - Blood. 2011; 118(18):4882-4889

Cytotoxicity of farnesyltransferase inhibitors in lymphoid cells mediated by MAPK pathway inhibition and Bim up-regulation

Husheng Ding,¹ Jennifer Hackbarth,¹ Paula A. Schneider,¹ Kevin L. Peterson,¹ X. Wei Meng,¹ Haiming Dai,¹ Thomas E. Witzig,² and Scott H. Kaufmann^{1,2}

Divisions of ¹Oncology Research and ²Hematology, Mayo Clinic College of Medicine, Rochester, MN

Blood 2011 10.1182/blood-2011-02-334870

Multi-institutional phase 2 study of the farnesyltransferase inhibitor tipifarnib (R115777) in patients with relapsed and refractory lymphomas

Thomas E. Witzig,¹ Hui Tang,² Ivana N. M. Micallef,¹ Stephen M. Ansell,¹ Brian K. Link,³ David J. Inwards,¹ Luis F. Porrata,¹ Patrick B. Johnston,¹ Joseph P. Colgan,¹ Svetomir N. Markovic,¹ Grzegorz S. Nowakowski,¹ Carrie A. Thompson,¹ Cristine Allmer,² Matthew J. Maurer,² Mamta Gupta,¹ George Weiner,³ Ray Hohl,³ Paul J. Kurtin,⁴ Husheng Ding,⁵ David Loegering,⁵ Paula Schneider,⁵ Kevin Peterson,⁵ Thomas M. Habermann,¹ and Scott H. Kaufmann^{1,5}

Blood 2011 10.1182/blood-2011-02-334904

ORR in all 93 patients with different types of lymphoma = 20%

NCT00082888; LS038B Iowa/Mayo SPORE trial

Development Path

- Studies in unselected patients with NHL, AML and solid tumors were not felt to be promising enough for registration
 Drug development of Tipi and other FTI was halted
- Drug in licensed to Kura Oncology from Janssen
- Samples from previous studies were re-evaluated for new biomarkers that would predict for response
- New trials (KO-TIP-002) were designed to test this biomarker strategy

Goals of this Presentation

- To review data from this *new ongoing* phase 2 study (KO-TIP-002) of single-agent tipifarnib in T-cell lymphoma
 - Single-agent tipifarnib at a dose of 300 mg po bid days 1-21 q28 days
- Demonstrate how 3 biomarkers learned from unselected pts are being used prospectively to enrich the ORR to Tipifarnib
 - CXCL12 expression and its receptor CXCR4
 - CXCL5 expression and its receptor CXCR2
 - KIR3DL2 variants in the tumor

10.1016/j.ejpb.2017.07.003

10.1038/s41467-019-12108-6

Tipifarnib is a CXCL12/CXCR4 Pathway Inhibitor

• High CXCL12 expression defines poor prognosis in PTCL

- 50% of AITL and 35% of PTCL-NOS have high CXCL12 expression
- Trend for worse prognosis in AITL and PTCL-NOS patients with tumors with high CXCL12 expression¹

• Tipifarnib is a CXCL12/CXCR4 pathway inhibitor

- Tipifarnib downregulates CXCL12 secretion ex-vivo in stroma cultures
- Expression of uniquely farnesylated proteins (RHOE and PRICKLE2) is strongly correlated with CXCL12 expression, suggesting potential CXCL12-related tipifarnib targets²
- Resistance to tipifarnib potentially mediated by CXC<u>R2</u> and its ligand CXC<u>L5</u>
 - Tipifarnib does not downregulate other chemokines such as CXCL5, and CXCL5 expressing AITL appears to be less sensitive to tipifarnib³

Trend for poor prognosis with high CXCL12 expression (adjusted to CXCR4) in AITL and PTCL NOS pts

Tipifarnib downregulates the secretion of CXCL12 exvivo in CD1 mouse bone marrow cultures

¹ Witzig 2018 *Blood* 132:2937 | ² Gualberto EHA 2019 #PS1002 | ³ Gualberto *Blood* 2017 130:3957

Study Design of KO-TIP-002¹

Protocol Stages 1 and 2

- Unselected R/R PTCL, including AITL and PTCL-NOS
- Tipifarnib 600 900 mg orally (po) twice daily (bid) on days 1-7 and days 15-21 every 28 days
- **Results**²: Primary objective not met. Only 3 of the 4 responses needed were observed in first unselected 19 patients.
- Biomarker Analysis:
- Antitumor activity (PR, SD) observed in AITL and PTCL-NOS pts with high levels of tumor CXCL12 gene expression in retrospective analyses.
- High CXCL12 expression correlated with wild type CXCL12
 3'UTR gene sequences.

The rs2839695 A>G Variant in the 3'UTR CXCL12 observed in pts that progressed.

rs2839695 A>G lowers CXCL12 expression; is present in stromal cells and is detectable in buccal swabs

AITL Cohort (N = up to 20)

- R/R AITL, \geq 1 prior therapy, measurable disease, ECOG 0-2
- Tipifarnib 300 mg po bid on days 1-21 every 28 days
- Hypothesis: If ≥ 4 responses observed, 82.6% probability that the true response rate is at least 30%.

Wild type (wt) CXCL12 3'UTR Cohort (N=12)

- R/R PTCL, ≥ 1 prior therapy, measurable disease, ECOG 0-2; AITL pts could be enrolled once the AITL cohort enrollment was complete.
- wt CXCL12 3'UTR defined by PCR of the rs2839695 locus in buccal swabs
- Tipifarnib 300 mg po bid on days 1-21 every 28 days
- Hypothesis: If ≥ 2 responses observed, 89% probability that the true response rate is at least 10%.

¹ NCT02464228, KO-TIP-002 | ² Witzig 2017 *Hematol Oncol* 35(S2): 251–2

Proof of Concept for Tipifarnib in wt CXCL12 3'UTR PTCL

	wt CXCL12 3'UTR Cohort: PTCL-NOS		Variant CXCL12 3'UTR ² PTCL-NOS enrolled in S1/2
Total treated	1	1	6
Total efficacy evaluable	(9	6
Overall Best Response			
Complete Response (CR)	1		-
Partial Response (PR)	2		-
Stable Disease (SD)	6		-
Progressive Disease (PD)	· · · ·		6
Not efficacy evaluable (NE)	2		-
	PPS ¹	mITT	PPS/mITT
Overall Response Rate ¹ (CR + PR)	33.3%	27.3%	0%
95% CI	9.8 - 68.4	7.9 - 59.9	0 - 40.6
Clinical Benefit Rate ¹ (CR + PR + SD)	100%	81.8%	
95% CI	68.4 - 100.0	50.0 - 96.7	

¹ Per protocol set – prespecified primary analysis population includes all pts who received at least 1 dose of tipifarnib and have 1 post-baseline tumor measurement

Preliminary data as of 24 May 2019

Tumor Reduction in PTCL-NOS, wt CXCL12 3'UTR

- 77 yo; PTCL-NOS Stage IV
- CHOP x 5 with response then PROG biopsy-proven PTCL relapse in multiple skin nodules
- Rapid PR after two cycles of tipifarnib

Baseline

Demographics: All AITL Patients¹

	Total		
AITL Patients Treated ¹ , n (%)	26 (100)		
AITL Patients Evaluable for Efficacy ² , n (%)	20 (100)		
Age, yrs			
Median	66.3		
Min, Max	46, 87		
Male, n (%)	17 (65)		
Female, n (%)	9 (35)		
Number of Prior Anti-Cancer Regimens			
Median	3		
Min, Max	1, 7		
Prior ASCT, n (%)	13 (50)		

Preliminary data as of 11 Nov 2019

¹ AITL patients were enrolled in stages 1 and 2 of the original protocol, in the AITL cohort, and the CXCL12+ PTCL cohort. Two additional AITL patients have been enrolled since data cutoff date. ² To be evaluable for efficacy, patient must have received at least 1 dose of tipifarnib and have at least 1 post baseline tumor response assessment

Proof of Concept of Tipifarnib in AITL

Total AITL pts treated	26	
Efficacy evaluable	20	
Overall Best Response		
Complete Response (CR)	5	
Partial Response (PR) 5		
Stable Disease (SD)	3	
Progressive Disease (PD)	7	
Not efficacy evaluable (NE)/Not yet evaluable	5/1	
	PPS ¹	mITT
Overall Response Rate (CR + PR)	50%	38%
95% CI	(28%, 72%)	(20%, 59%)
Clinical Benefit Rate (CR + PR + SD)	65%	50%
95% CI	(44%, 86%)	(30%, 70%)

Preliminary data as of 11 Nov 2019

¹ Per protocol set – prespecified primary analysis population includes all pts who received at least 1 dose of tipifarnib and have 1 post-baseline tumor measurement.

Durable Clinical Responses with Tipifarnib in AITL

Significant Reduction in Tumor Burden with Tipifarnib Treatment

Preliminary data as of 11 Nov 2019 Measurement data not available: 1 PD and 6 NE pts

Using KIRs to Select Responders

Killer Cell Immunoglobulin - Like Receptor (KIR)

- KIRs = transmembrane glycoproteins expressed in NK/T cells
 - Control chemokine/cytokine release and angiogenesis.
- KIR-DS receptors signal intracellularly through ITAM motifs and Src
- KIR-DL receptors signal through ITIM motifs and SHP(s).
 - SHP(s) dephosphorylate Src phosphorylation targets.

KIR Variants are associated with Low CXCL5

- Structure and function of KIRs were evaluated in patient tumor samples.
- Expression of IL-18 and CXCL5 were significantly lower in AITL tumors carrying KIR3DL2 C336R/Q386E variants.
- CXCL5 is potentially a mechanism of resistance to tipifarnib.
- No effect of KIR3DL2 variants on CXCL12

High Activity of Tipifarnib in AITL with KIR3DL2 C336R/Q386E Variants

Ten of 19 DNA sequenced tumors carried C336R/Q386E gene variants of KIR3DL2 and were highly sensitive to tipifarnib.

	KIR3DL2 C336R/386E^	KIR3DL2 Wild Type
Ν	10	9
Overall Best Response		
CR	4	1
PR	3	1
SD	2	-
PD/NE	1	4/3*
ORR (mITT)	70%	22%
95% CI	36 - 93%	28 – 60%

KIR3DL2 C336R variant allele frequency (VAF) correlated with quality of response.

RESP.	KIR3DL2 C336R VAF
SD	43.9
CR	40.8
CR	39.1
CR	36.6
CR	33.3
PR	27
PR	22
SD	21.6
PR	20.9
PD	15

Preliminary data as of 11 Nov 2019.

^ Subjects carried both C336R and Q383E missense KIR3DL2 variants as determined by tumor NGS .

* One WT subject is pending first on-study efficacy assessment. VAF= variant allele frequency

Safety and tolerability of tipifarnib in AITL

• TEAEs were consistent with the known safety profile of tipifarnib. Most frequently observed TEAEs (all grades, ≥ 10% pts) were hematological-related events (thrombocytopenia, neutropenia, anemia and leukopenia).

Grade 3 or Higher Study Drug Related TEAEs (≥ 10% pts)			
Patients With at Least One Gr 3 or Higher Related TEAE, n (%)	19 (73.1)		
Thrombocytopenia	10 (38.5)		
Neutropenia	8 (30.8)		
Anemia	5 (19.2)		
Leukopenia	4 (15.4)		
Febrile neutropenia	3 (11.5)		
Pancytopenia	3 (11.5)		

Conclusions

- Tipifarnib is active in AITL pts; ORR = 50% (PPS), 38% (mITT)
- Patients with high CXCL12 expression and KIR3DL2 gene variants provide a robust tool for the selection/stratification of AITL patients; ORR = 70% (PPS/mITT).
- Side effects are similar to past experience and are primarily hematological events which may require dose modifications and/or supportive care.
- These data have informed the design of a single-arm tipifarnib monotherapy registration-directed trial in relapsed/refractory AITL and AITL-like histologies.
- Other CXCL12 indications, e.g. PTCL-NOS, CTCL and DLBCL, should be considered in future trials.

Acknowledgements

- Patients, their families and caregivers
- Study Investigators and their study teams
- Kura Oncology