Preliminary results from a phase 2 proof of concept trial of tipifarnib in tumors with HRAS mutations

Alan Ho¹, Nicole Chau², Deborah J. Wong³, Maria E. Cabanillas⁴, Jessica Bauman⁵, Marcia S. Brose⁶, Keith Bible⁷, Valentina Boni⁸, Irene Brana⁹, Charles Ferte¹⁰, Caroline Even¹⁰, Francis Burrows¹¹, Linda Kessler¹¹, Vishnu Mishra¹¹, Kelly Magnuson¹¹, Catherine Scholz¹¹ and Antonio Gualberto¹¹

¹ Memorial Sloan Kettering Cancer Center, New York, NY USA, ² Dana-Farber Cancer Institute, Boston, MA USA, ³ UCLA Medical Center, Santa Monica, CA USA, ⁴ The University of Texas MD Anderson Cancer Center, Houston, TX, USA, ⁵ Fox Chase Cancer Center, Philadelphia, PA, USA, ⁶ Abramson Cancer Center at the University of Pennsylvania School of Medicine, Philadelphia, PA USA, ⁷ Mayo Clinic, Rochester, MN, USA, ⁸ START Madrid-CIOCC, Madrid, Spain, ⁹ Vall D'Hebron Institute of Oncology, Barcelona, Spain, ¹⁰ Gustave Roussy, Villejuif, France, ¹¹ Kura Oncology, San Diego, CA, USA

Memorial Sloan Kettering Cancer Center

Disclosures

Research Funding (Trials)

- AstraZeneca
- Pfizer
- Bayer
- Genentech/Roche
- Lily
- Eisai
- Koltan
- Kura Oncology
- Merck
- BMS

Travel/Meeting Expenses: Kura Oncology

Off-label use of drugs will be discussed.

Consulting/Advisory Boards

- AstraZeneca
- Novartis
- Genentech/Roche
- Eisai
- Merck
- BMS
- Genzyme
- Regeneron
- Sun Pharmaceuticals

Mutant HRAS Oncogene Activity is Uniquely Dependent on Farnesylation

- RAS superfamily (KRAS/NRAS/HRAS) members require the covalent addition of a hydrophobic group to their C-terminal tail (known as "prenylation") for membrane localization and downstream signaling.
- Farnesyltransferase (FT) catalyzes the attachment of farnesyl groups to RAS proteins and other cell signaling proteins.
- NRAS and KRAS are susceptible to redundant forms of prenylation, but <u>HRAS can only be</u> <u>farnesylated</u>.

CENTRAL HYPOTHESIS:

HRAS driven malignancies are uniquely susceptible to FTI therapy.

Tipifarnib: First-in-class FTI

- Potent/highly selective inhibitor of farnesyltransferase (FT) that competitively binds to the CAAX motif¹.
- Previously studied in > 5,000 patients (70+ studies).
- Prior trials <u>without genetic selection</u> yielded insufficient clinical activity to support registration, though anecdotal evidence of single agent durable responses had been reported.
- Manageable safety profile as single agent therapy (<25% treatment discontinuation).

Phase 2 Trial in HRAS Mutant Solid Tumors

Key Eligibility:

- No curative therapy available
- HRAS mutation
- Measurable disease (RECIST v1.1)
- ECOG PS 0 1

Primary Objective: ORR Design: Simon 2-stage (11+7 pts) Hypothesis: 10% (H0) vs 30% (H1) ORR, a=0.05, 80% power (4 responses needed)

Tipifarnib 900 mg po bid on Days 1 – 7 and 15 – 21 of 28-day treatment cycles

HRAS Mutations Define a Unique Molecular HNSCC Subset

Missense Mutation (putative driver)
 Missense Mutation (putative passenger)
 Truncating Mutation

- The HRAS mutant subset of HNSCC is characterized by low rate of genetic alterations, frequent CASP8 inactivation, and infrequent of TP53 mutation¹.
- It is thought that HRAS/CASP8 alteration converge on NF-kB to induce tumor cell growth and survival¹.
- HRAS mutations in HNSCC are observed in ~5% of cases at initial diagnosis².
- An additional 15% of cases may develop during 1L therapy, in subjects treated with cetuximab³.

- 1. Cerami et al 2012. Cancer Discov. 2:401-4
- 2. Sathyan et al. 2007. Modern Path 20, 1141-8
- 3. Braig et al., Oncotarget 7:42988-42995, 2016
- 4. Cancer Genome Atlas Network 2015. Nature 517:576-82.

Tipifarnib in HRAS Mutant HNSCC and Skin SCC Patients

Preliminary data as of 04 October 2017

Durable Response on Tipifarnib after Cetuximab/Chemo/RT

76 yo man with metastatic tracheal SCC

HPV/p16 (-), no tobacco/ETOH

HRAS Q22K (observed in Costello's Syndrome) and CDKN2A deletion (p14, p16)

Baseline

Cycle 4, 35% reduction

Tipifarnib Response in Nasopharyngeal Ca s/p Immunotherapy

59 yo female with nasopharynx SCC with HRAS G12D

Baseline

Cycle 2, 40% reduction

Cycle 6, 49% reduction

Symptom Improvement and Stable Disease in Cutaneous SCC

81 yo male with right ear SCC and history of aggressive disease.

- HRAS G12D, TP53 R110P and R248W mutations.
- Disease stabilization and dramatic reduction in pain medication with tipifarnib treatment.

Date	Pain Medication
5/May/2017	Fentanyl patch 100 mcg/h Transmucosal fentanyl 200 mcg for breakthrough pain
16/May/2017	Methadone 5 mg Q 8 hours Transmucosal fentanyl 200 mcg for breakthrough pain
24/May/2017	C1D1 Tipifarnib – grade 2 pain
28/May/2017	Pain grade 1. No breakthrough medication needed
5/Jul/2017	Fentanyl patch 50 mcg/h

Cycle 2

Images provided by Dr. Irene Braña

Tipifarnib Regression of Widely Metastatic Laryngeal SCC

HRAS G13V, TP53 R248Q

Baseline

Tipifarnib Response and Resolution of Disfiguring Skin Lesions s/p Immunotherapy Failure

Initial PR (40% tumor reduction) on Cycle 1 Day 15 (7 days tipifarnib + 7 days rest); 56% size reduction at Cycle 3

Baseline

Cycle 3, 56% reduction

Cycle 1 Day 1

Cycle 4 Day 1

Images provided by Dr. Caroline Even and Dr. Charles Ferte

Significant Tumor Size Reduction and Durable Responses Observed in HRASm HNSCC Patients Treated with Tipifarnib

Conclusions

- First clinical evidence that mutant HRAS is a targetable oncogene.
- Phase 2 proof-of-concept of tipifarnib efficacy for recurrent/metastatic HNSCC carrying HRAS mutations.
 - Confirmed PRs in 4 of 6 HNSCC patients (67%, 22-95% 95% CI)
 - Rapid and durable responses (2 responses >1 year)
 - Activity in disease resistant to chemotherapy, cetuximab and immunotherapy
 - Resolution of disfiguring lesions
 - Decrease in pain and use of pain medication (cutaneous SCC)
- AEs observed are consistent with the known safety profile of tipifarnib
 - Gr 3 TEAEs included myelosuppression (neutropenia, 31%, anemia 19%, thrombocytopenia 15%), GI disturbances (15%), and increased creatinine (11%) (N=27, overall study).
 - 2 HNSCC required dose reductions for Gr 2 peripheral neuropathy at Cycle 1 and Cycle 10.
 - 3/27 (11%) patients (0/6 HNSCC) discontinued for reasons other than disease progression [(Gr 3 GI (1); Gr 3 Renal (2)]

Acknowledgements

- Patients, their families and caregivers
- Study Investigators and their study teams
- Kura Oncology