Preliminary results from a phase 2 trial of tipifarnib in Head and Neck Squamous Cell Carcinomas (HNSCCs) with HRAS mutations.

Alan Ho¹, Irene Brana², Robert Haddad³, Jessica Bauman⁴, Keith Bible⁵, Laurence Faugeras⁶, Sjoukje Oosting⁷, Deborah J. Wong⁸, Myung-Ju Ahn⁹, Valentina Boni¹⁰, Caroline Even¹¹, Jerome Fayette¹², Maria José Flor¹³, Kevin Harrington¹⁴, Sung-Bae Kim¹⁵, Lisa Licitra¹⁶, Ioanna Nixon¹⁷, Nabil F. Saba¹⁸, Cyrus Sayehli¹⁹, Pol Specenier²⁰, Francis Worden²¹, Binaifer Balsara²², Jeanne Britt²², Vishnu Mishra²³, Catherine Scholz²² and Antonio Gualberto²²

- ¹ Memorial Sloan Kettering Cancer Center, New York, NY USA
- ² Vall D'Hebron Institute of Oncology, Barcelona, Spain
- ³ Dana-Farber Cancer Institute, Boston, MA USA
- ⁴ Fox Chase Cancer Center, Philadelphia, PA, USA
- ⁵ Mayo Clinic, Rochester, MN, USA
- ⁶ CHU UCL Namur, Yvoir, Belgium
- ⁷ University Medical Center Groningen, Groningen, The Netherlands
- ⁸ UCLA Medical Center, Santa Monica, CA USA
- ⁹ Samsung Medical Center, Seoul, Korea
- ¹⁰ START Madrid-CIOCC, Madrid, Spain
- ¹¹ Gustave Roussy, Villejuif, France
- ¹² Centre Leon Berard, Lyon, France

- ¹³ Hospital Virgen del Rocio, Sevilla, Spain
- ¹⁴ The Institute of Cancer Research, London, England
- ¹⁵ Asan Medical Center, Seoul, Korea
- ¹⁶ Fondazione IRCCS Istituto Nazionale Tumori Milano, Italy
- ¹⁷ Beatson West of Scotland Cancer Centre, Glasglow, Scotland
- ¹⁸ Winship Cancer Institute of Emory University, Atlanta, GA, USA
- ¹⁹ Universitätsklinik Würzburg, Würzburg, Germany
- ²⁰ University Hospital Antwerp, Edegem, Belgium
- ²¹ University of Michigan Comprehensive Cancer Center, Ann Arbor, MI, USA
- ²² Kura Oncology, Cambridge, MA, USA
- ²³ Kura Oncology, San Diego, CA, USA

Disclosure Information: Alan Ho, MD, PhD

AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics

- I have the following financial relationships to disclose:
 - Consultant for: Kura Oncology (travel/lodging/conference fees only), AstraZeneca, TRM Oncology, Sun Pharmaceuticals, Merck, Eisai, Sanofi Aventis, Regeneron, Ayala Pharmaceuticals, Genzyme, Novartis, Bristol-Myers Squibb, Genentech, Novartis, Janssen (travel only), Hai-II, Guidepoint Global Advisors (no payment received), Ignyta (travel/lodging/conference fees only), Klaus Pharmaceutical
 - Speaker's Bureau for: Omniprex America LLC, Medscape, Novartis
 - Grant/Research support from: (trial support) AstraZeneca, Kura Oncology, Eisai, Bristol-Myers Squibb, Koltan Pharmaceuticals (Celldex), Genentech/Roche, Lilly, Bayer, Novartis Daiichi Sankyo, Ayala Pharmaceuticals, Merck, Allos Pharm
 - Stockholder in: N/A
 - Honoraria from: N/A
 - Employee of: N/A
- and -
- I will discuss the following off label use and/or investigational use in my presentation: tipifarnib

Mutant HRAS Oncogene Activity is Uniquely Dependent on Farnesylation

- HRAS activity requires covalent addition of a farnesyl hydrophobic group to its C-terminal tail for membrane localization and downstream signaling.
- Farnesyltransferase (FTase) enzyme catalyzes the attachment a farnesyl groups to HRAS
- Tipifarnib is a potent and selective farnesyltransferase inhibitor

 Blocking farnesylation prevents wild-type and mutant HRAS membrane localization

Antitumor activity in HNSCC PDX models (N=36)

Hypothesis: Tumors driven by HRAS mutations may be highly sensitive to tipifarnib

Study Design¹

Original Protocol

- Key Eligibility: No curative therapy available, HRAS mutation, measurable disease (RECIST v1.1), ECOG PS 0 – 1
- 2 cohorts: Cohort 1: Thyroid. Cohort 2: Any other solid tumor; amended to HNSCC only. Each cohort with 18 evaluable pts
- Hypothesis: 10% (H0) vs 30% (H1) ORR, α =0.09, 80% power
- Tipifarnib 900 mg orally (po) twice daily (bid) on days 1-7 and days 15-21 every 28 days
- Results²:
 - POC for tipifarnib in recurrent/metastatic HNSCC carrying HRAS mutations.
 - Rapid onset and durable responses.
 - Activity in disease resistant to chemotherapy, cetuximab and immunotherapy.
 - Median dose on study of 600 mg bid by end of cycle 1.
 - Association between HRAS allele frequency and clinical benefit.

HNSCC Extension Cohort (N=30)

- HRAS variant allele frequency (VAF) ≥20% and serum albumin ≥ 3.5 g/dL or HRAS VAF ≥35%
- No curative therapy available, measurable disease (RECIST v1.1), ECOG PS 0 – 1
- Tipifarnib 600 mg orally (po) twice daily (bid) on days
 1-7 and days 15-21 every 28 days

Other SCCs (non-HNSCC) Cohort (N=20)

Enrollment ongoing

¹ NCT02383927, KO-TIP-001 | ² A L Ho, et. al., *Annals of Oncology*, Volume 29, Issue suppl_8, October 2018, mdy287.002, https://doi.org/10.1093/annonc/mdy287.002

Patient Demographics: HRAS mutant HNSCC¹

	Total
Total Patients Treated ¹ , n (%)	21 (100)
Total Evaluable for Efficacy ² , n (%)	18 (85.7)
Age, yrs, median (min, max)	64 (20, 89)
Male, n (%)	14 (66.7)
Site of Primary Tumor, n (%)	
Oral Cavity	11 (52.4)
Pharynx	6 (28.6)
Larynx	3 (14.3)
Other	1 (4.8)
Number of Prior Anti-Cancer Regimens	
Median (min, max)	2 (0, 6)
Type of Prior Anti-Cancer Therapy, n (%)	
Platinum	19 (90.5)
Immunotherapy	13 (61.9)
Cetuximab	11 (52.4)

Preliminary data as of 17 Oct 2019

¹ Subjects with HRAS VAF ≥20% and serum albumin ≥ 3.5 g/dL or HRAS VAF ≥35% enrolled in stages 1, 2 or in the HNSCC extension cohort. Additionally, 1 subject is included who was treated off protocol through compassionate use.

² One subject pending 1st tumor response assessment; two subjects withdrew consent prior to 1st tumor response assessment

Tipifarnib treatment results in 56% ORR with durable responses in HNSCC HRAS mutant ≥20% VAF¹

Maximum Change in Tumor Burden²

Time on Treatment

Treatment Cycles

Preliminary data as of 17 Oct 2019

Not yet efficacy evaluable Not efficacy evaluable * unconfirmed PR (uPR) 600 mg starting dose

¹ Subjects with HRAS VAF ≥20% and serum albumin ≥ 3.5 g/dL or HRAS VAF ≥35% enrolled in stages 1, 2 or in the HNSCC extension cohort. Additionally, 1 subject is included who was treated off protocol through compassionate use.

² Tumor measurements not available from 3 subjects (not evaluable/not yet efficacy evaluable)

PFS in HNSCC HRAS mutant ≥20% VAF¹

Preliminary data as of 17 Oct 2019

¹ Efficacy evaluable subjects with HRAS VAF ≥20% and serum albumin ≥ 3.5 g/dL or HRAS VAF ≥35% enrolled in stages 1, 2 or in the HNSCC extension cohort. Additionally, 1 subject is included who was treated off protocol through compassionate use. ² One subject did not receive prior systemic therapy

Safety and tolerability of tipifarnib in HRAS mutant HNSCC¹

- All HNSCC patients meeting HRAS VAF criteria $(N = 20)^1$ had at least 1 treatment-emergent adverse event (TEAE). No study drug related deaths reported.
- TEAEs were consistent with the known safety profile of tipifarnib. Most frequently observed TEAEs (all grades,
 ≥ 10% pts) were hematological-related events, gastrointestinal disturbances, fatigue, blood creatinine increased, tremor, decreased appetite, acute kidney injury and rash/pruritus.
- Improved tolerability observed with the 600 mg bid dose.

Grade 3 or Higher Study Drug Related TEAEs (≥ 10% pts)

	600 – 900 mg bid days 1-7 and 15-21 (n = 20)
BLOOD AND LYMPHATIC SYSTEM DISORDERS, n (%)	9 (45.0)
Anemia	7 (35.0)
Neutropenia	4 (20.0)
Leukopenia	2 (10.0)
Thrombocytopenia	2 (10.0)
GASTROINTESTINAL DISORDERS, n (%)	3 (15.0)
Nausea	2 (10.0)

Preliminary data as of 17 Oct 2019

¹ Subjects with HRAS VAF ≥20% and serum albumin ≥ 3.5 g/dL or HRAS VAF ≥35% enrolled in stages 1, 2 or in the HNSCC extension cohort of the KO-TIP-001 Phase 2 trial. The one subject treated off protocol through compassionate use is not included in this summary.

Conclusions

- Tipifarnib demonstrated compelling antitumor activity in a heavily pretreated cohort of recurrent/metastatic HNSCC carrying HRAS mutations.
 - Per protocol ORR = 56% (95% CI 0.31, 0.78), 48% ORR by ITT
 - Responses were rapid and durable with 8.3 mos median PFS for patients with PR and 4.5 mos in those with SD
 - Activity was seen in disease resistant to chemotherapy, immunotherapy and cetuximab.
- TEAEs were consistent with the known safety profile of tipifarnib.
 - The majority of Grade ≥ 3 TEAEs were hematological events managed with best supportive care.
 - Treatment with tipifarnib 600mg bid days 1-7 and days 15-21 every 28-days was generally well tolerated with objective clinical responses observed in patients treated at this dose level.
- Based on these data, a pivotal study (AIM-HN and SEQ-HN Study, NCT03719690) evaluating the
 efficacy of tipifarnib in HRAS mutant HNSCC (AIM-HN) and the impact of HRAS mutations on first
 line HNSCC therapies (SEQ-HN) is currently ongoing.
- Data support testing of single agent tipifarnib in high HRAS allele patient subset (~5% HNSCC) but opportunities for combination with chemotherapy, immunotherapy and/or cetuximab in the 1-20% HRAS VAF subset (~15% HNSCC) under consideration

Acknowledgements

- Patients, their families and caregivers
- Study Investigators and their study teams
- Kura Oncology