
A Phase 1 Study of the Next-Generation Farnesyltransferase Inhibitor (FTI) KO-2806 as Monotherapy in Advanced Solid Tumors

Glenn J. Hanna¹, Jacob Thomas², Justine Bruce³, Manish R. Patel⁴, Guru Sonpavde⁵, Douglas R. Adkins⁶, Andrew Hendifar⁷, David Hong⁸, Nawal Bendris⁹, Tuan Anh Tran⁹, Stephen Dale⁹, Jabed Seraj⁹, JC Kuan⁹, Amitava Mitra⁹, Mollie Leoni⁹, Andrew Saunders⁹, Jason Henry¹⁰

¹Center for Head and Neck Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; ²Division of Medicine, University of Southern California Norris Comprehensive Cancer Center, University of Wisconsin, Madison, WI; ⁴Florida Cancer Specialists, Sarah Cannon Research Institute, Sarasota, FL, USA; ⁵Division of Hematology/Oncology, AdventHealth Central Florida, Orlando, FL, USA; ⁶Siteman Cancer Center, Washington University School of Medicine, Saint Louis, MO, USA; ⁷Division of Medical Oncology, Cedars-Sinai Medical Center, Los Angeles, CA, USA; 8University of Texas MD Anderson Cancer Center, Houston, TX, USA; 9Kura Oncology, Inc., San Diego, CA, USA; 10Sarah Cannon Research Institute, HealthOne, Denver, CO, USA

BACKGROUND

- Farnesylation, a post-translational modification, attaches a farnesyl group to proteins,
- anchoring them to cell membranes to facilitate signaling complexes critical for cellular function¹ • Key signaling proteins, including NRAS, KRAS, HRAS, and RHEB, require farnesylation for
- localization and activity in oncogenic pathways²⁻⁴ HRAS and RHEB depend solely on farnesylation for function, whereas NRAS and KRAS
- can use alternative prenylation (eg, geranylgeranylation) when farnesylation is inhibited^{2–4} • HRAS-mutant (-m) tumors, which are highly reliant on farnesylation, are sensitive to farnesyltransferase inhibitors (FTIs), with the FTI tipifarnib demonstrating encouraging clinical activity in patients with *HRAS*-m tumors^{5,6}
- KO-2806 (darlifarnib), a next-generation FTI (Figure 1), offers enhanced potency⁷⁻⁹ and optimized pharmacokinetic (PK) properties that support once daily dosing

AKT, protein kinase B; FTase, farnesyltransferase; MAPK, mitogen-activated protein kinase; mTORC1; mammalian target of rapamycin complex 1; PI3K, phosphatidylinositol 3-kinase; RHEB, Ras homolog enriched in brain.

Q AIM

• We evaluated safety, tolerability, PK, and preliminary antitumor activity of KO-2806 monotherapy in patients with RAS-altered advanced solid tumors in the FIT-001 study (NCT06026410)

METHODS

- FIT-001 is an ongoing first-in-human, multicenter, open-label, phase 1a/b dose-escalation/-expansion study of KO-2806 alone and in combination in patients with advanced solid tumors:
- KO-2806 monotherapy for patients with RAS-altered solid tumors (Figure 2) KO-2806 3, 5, 8, 10, or 15 mg was orally administered once daily (QD) on Days 1–7 and 15-21 in 28-day cycles

KO-2806 QD Monotherapy

(Phase 1a: Dose Escalation)^a

KO-2806 15 mg

Figure 2. FIT-001 study design

Key Eligibility Criteria

- Age ≥ 18 years Karnofsky PS ≥ 70
- Advanced solid tumors
- Any solid tumor: HRAS-m/-amp
- HNSCC:

- Safety and tolerability
- HRAS overexpression KO-2806 10 mg - NSCLC/CRC: KRAS/NRAS/ HRAS-m/-amp KO-2806 8 mg **Key Endpoints** KO-2806 5 mg Antitumor activity KO-2806 3 mg Pharmacokinetics

^aEach individual patient will receive one of the planned dose levels of KO-2806. amp, amplifed; CRC, colorectal cancer; HNSCC, head and neck squamous cell carcinoma; m, mutant; NSCLC, non-small cell lung cancer; PS, performance status; QD, once daily.

olo RESULTS

Patients and treatment

- From Oct 18, 2023 to Aug 15, 2025, 31 patients with advanced, RAS-altered solid tumors were enrolled across 9 sites in the US (**Table 1**)
- As of the data cutoff date (Aug 15, 2025), 31 patients received KO-2806 monotherapy; 24 had discontinued due to progressive disease (n = 20), adverse events (AEs; n = 2), or other reason (n = 2; including symptomatic deterioration, use of prednisone > 12 mg during palliative radiation; n = 1 each
- Table 1. Demographics and baseline characteristics

	KO-2806 3 mg (n = 3)	KO-2806 5 mg (n = 5)	KO-2806 8 mg (n = 12)	KO-2806 10 mg (n = 10)	KO-2806 15 mg (n = 1)
Median age, years (range)	63 (61–74)	61 (53–75)	57 (36–70)	54 (47–76)	77 (77–77)
Male, n (%)	1 (33)	3 (60)	8 (67)	9 (90)	1 (100)
Race, n (%)					
White	3 (100)	5 (100)	8 (67)	8 (80)	1 (100)
Other	0	0	2 (17)	1 (10)	0
Asian	0	0	2 (17)	0	0
Black or African American	0	0	0	1 (10)	0
Ethnicity, n (%)					
Hispanic or Latino	0	0	2 (17)	1 (10)	0
Not Hispanic or Latino	3 (100)	5 (100)	10 (83)	8 (80)	1 (100)
NR	0	0	0	1 (10)	0
Primary tumor type, n (%)					
Pancreas	1 (33)	3 (60)	1 (8)	3 (30)	0
Rectum	1 (33)	1 (20)	2 (17)	2 (20)	0
Colon	0	0	1 (8)	4 (40)	0
Head and neck ^a	1 (33)	1 (20)	2 (17)	0	1 (100)
Other	0	0	4 (33)	0	0
Salivary gland ^a	0	0	1 (8)	1 (10)	0
Thyroid gland ^a	0	0	1 (8)	0	0
Karnofsky PS, n (%)					
50–70	0	0	1 (8)	0	0
80–100	3 (100)	5 (100)	11 (92)	10 (100)	1 (100)
Prior therapy lines ^b , n (%)					
0	0	1 (20)	0	0	0
1	0	2 (40)	3 (25)	0	0
2	2 (67)	0	2 (17)	5 (50)	1 (100)
≥ 3	1 (33)	2 (40)	7 (58)	5 (50)	0
HRAS alteration, n (%)	1 (33)	2 (40)	8 (67)	1 (10)	1 (100)
aHRAS-m-driven tumors. bPrior the	erapy lines in the ac	lvanced/metastatic	setting.		

NR. not reported: PS. performance status

Safety and tolerability

- Treatment-emergent AEs were consistent with the mechanism of action of FTIs (Table 2)
- Five patients had dose-limiting toxicities: 1 patient at 8 mg (lipase increased), 3 patients at 10 mg (platelet count decreased, anemia, and neutropenia, n = 1 each), and 1 patient at 15 mg (platelet count decreased)
- Treatment-related serious AEs occurred in 1 patient (8 mg): myalgia (grade 2), platelet count
- decreased (grade 2), and neutrophil count decreased (grade 4) • Three patients discontinued per investigator decision for KO-2806-related toxicity (n = 1, grade 3 malignant ascites and grade 3 acute kidney injury at 5 mg; n = 1, grade 3 tumor pain at 8 mg;

KO-2806 KO-2806 KO-2806 KO-2806

n = 1, grade 1 nausea and grade 2 anemia at 10 mg) The maximum tolerated dose was determined to be 10 mg

Table 2. Treatment-emergent adverse events (TEAEs)

n (%)	3 mg (n = 3)	5 mg (n = 5)	8 mg (n = 12)	10 mg (n = 10)	15 mg (n = 1)
Any-Grade TEAEs (≥ 25% of all patients)	3 (100)	5 (100)	11 (92)	9 (90)	1 (100)
Neutropenia	2 (67)	2 (40)	5 (42)	7 (70)	1 (100)
Anemia	3 (100)	3 (60)	7 (58)	1 (10)	1 (100)
Nausea	1 (33)	1 (20)	5 (42)	4 (40)	0
Thrombocytopenia	0	0	5 (42)	4 (40)	1 (100)
Fatigue	0	3 (60)	1 (8)	3 (30)	1 (100)
Grade ≥ 3 TEAEs (≥ 5% of all patients)	3 (100)	1 (20)	8 (67)	6 (60)	1 (100)
Neutropenia	0	0	4 (33)	6 (60)	1 (100)
Anemia	1 (33)	0	3 (25)	1 (10)	1 (100)
Thrombocytopenia	0	0	1 (8)	2 (20)	1 (100)
Leukopenia	0	0	1 (8)	1 (10)	1 (100)
Ascites	1 (33)	1 (20)	0	0	0
Hypokalemia	0	0	2 (17)	0	0

Antitumor activity

• Of 25 response-evaluable patients with ≥ 1 post baseline scan, 3 (12%) receiving KO-2806 monotherapy achieved a partial response (PR) (Table 3)

Table 3. Response in all response-evaluable patients

	_	-			
n (%)	KO-2806 3 mg (n = 3)	KO-2806 5 mg (n = 5)	KO-2806 8 mg (n = 8)	KO-2806 10 mg (n = 8)	KO-2806 15 mg (n = 1)
ORR (CR + PR)	0	1 (20)	2 (25) ^b	0	0
95% CI	0.0–70.8	0.5–71.6	3.1–65.1	0.0-36.9	0.0-97.5
HRAS-m patients, n/N (%)	0/1 (0)	1/2 (50)	2/4 (50)	0/1 (0)	0/1 (0)
95% CI	0.0–97.5	1.3–98.7	6.8–93.2	0.0–97.5	0.0–97.5
PR	0	1 (20)	2 (25) ^b	0	0
SD	1 (33)	2 (40)	3 (38)	2 (25)	0
DCR (CR + PR + SD)	1 (33)	3 (60)	5 (63) ^b	2 (25)	0
95% CI	0.8–90.6	14.7–94.7	24.5–91.5	3.2-65.1	0.0-97.5

^aResponse-evaluable patients had ≥ 1 post-baseline scan. ^bIncluding n = 1 confirmed PR; n = 1 unconfirmed PR. CI, confidence interval; CR, complete response; DCR, disease control rate; m, mutant; ORR, objective response rate; PR, partial response; SD, stable disease.

Antitumor activity (continued)

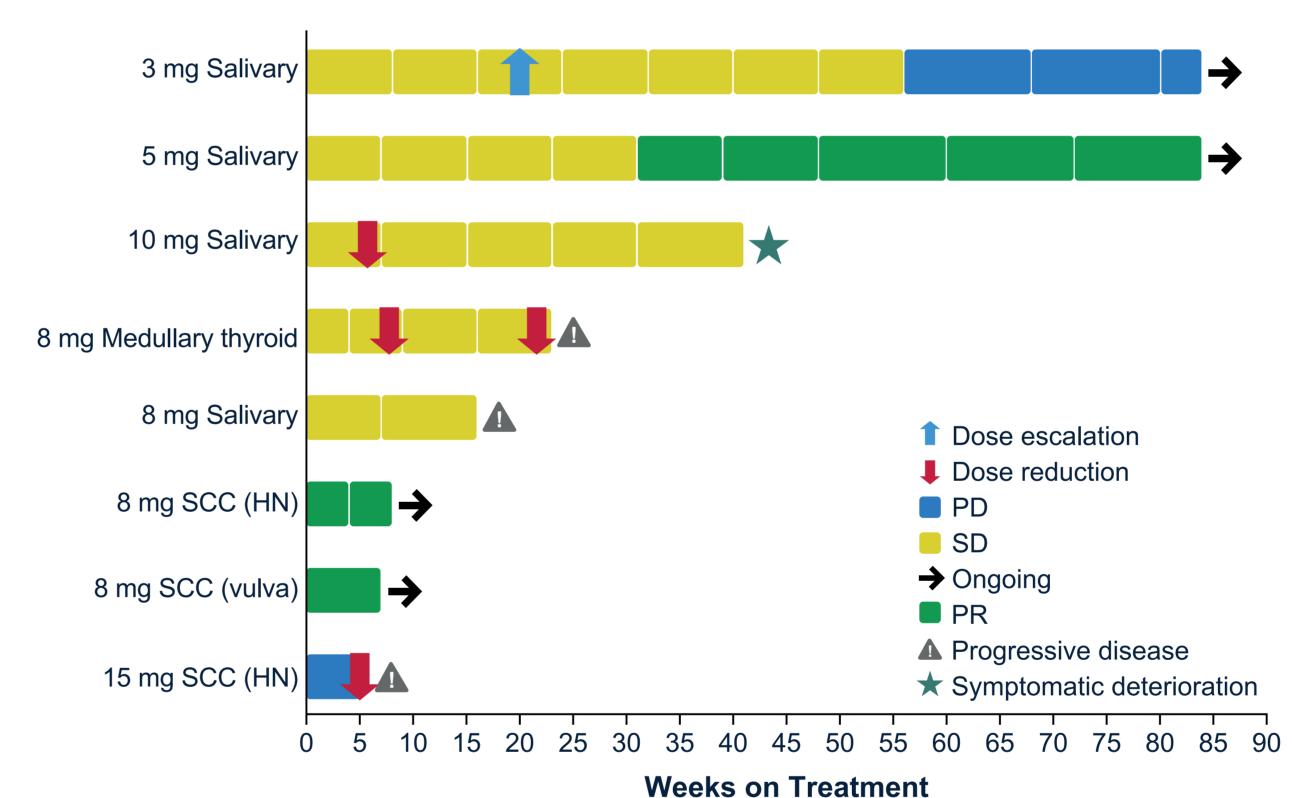

- In a subset of patients with advanced HRAS-m tumors who had clinical benefit, KO-2806 monotherapy demonstrated encouraging clinical activity with responses and/or durable disease control across 4 dose levels (Table 4)
- PRs were achieved in patients across tumor types: salivary, squamous cell carcinoma (head and neck), and squamous cell carcinoma (vulva)
- Durability of response and time on treatment are presented in Figure 3

Table 4. Subset of response-evaluable patients with HRAS-m tumors with clinical benefitb

Dose	Indication	<i>HRAS-</i> m	BOR	Max. Tumor Shrinkage, %	Time on Treatment, mo
3 mg [∘]	Salivary ^d	Q61R	SD	0	21 ^e
5 mg	Salivaryd	Q61R	PR	63	20 ^f
8 mg	Salivary	Q61R	SD	18	4
	SCC (HN)d	G13V	PR	61	3
	SCC (vulva)d	K117N	PR^g	56	2
	Medullary thyroid	G13R	SD	0	6
10 mg	Salivary	Q61R	SD	25	11

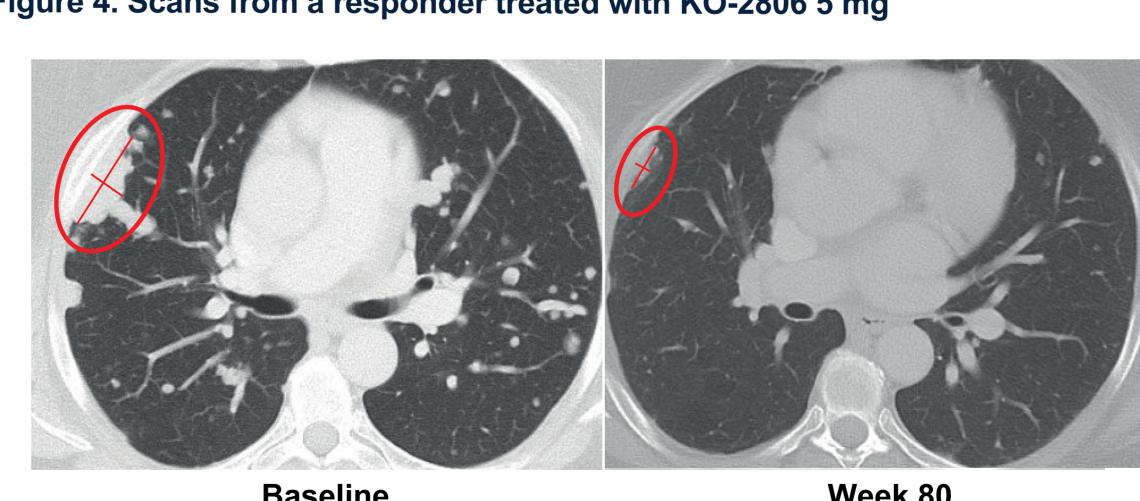

1 patient did not have clinical benefit with KO-2806 monotherapy. Dose was increased to KO-2806 5 mg at week 20. On study treatment as of Aug 15, 2025. Patient progressed 13.9 mo after treatment initiation; as of Jun 18, 2025, patient remained on study treatment (time from cycle 1 day 1 to most recent scan: 19.4 mo). Durable response. Unconfirmed PR as of data cutoff. BOR. best overall response: HN, head and neck; m, mutant; max, maximum; mo, months; PR, partial response; SCC, squamous cell carcinoma: SD. stable disease.

Figure 3. Time on treatment and durability of response in response-evaluable^a patients^b with HRAS-m tumors

^aResponse-evaluable patients had ≥ 1 post-baseline scan. ^b8 of 13 patients with *HRAS*-m tumors were response-evaluable. HN, head and neck; m, mutant; PD, progressive disease; PR, partial response; SCC, squamous cell carcinoma; SD, stable disease.

Figure 4. Scans from a responder treated with KO-2806 5 mg

cPR, TL SoD -62.8% from Baseline

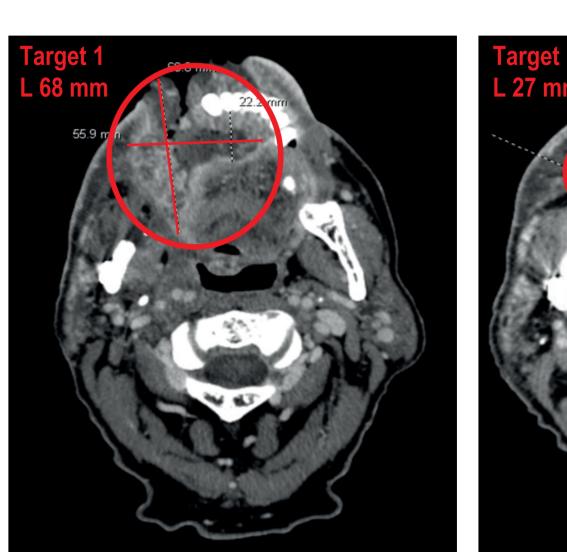
Response:

on treatment

PR (62.8% tumor shrinkage vs baseline)

As of data cutoff, patient remained

- cPR, confirmed partial response; SoD, sum of diameters; TL, target lesion.
- 60-year-old female patient with stage IVc Initiated KO-2806 5 mg treatment in salivary gland carcinoma (Figure 4) Dec 2023


HRAS Q61R, variant allele frequency

- PD-L1 tumor proportion score: 1%^a Prior therapies:
- Left total parotidectomy (Aug 2014), radiotherapy (Nov 2014), right lung videoassisted thoracic surgery, and wedge resection (Feb 2021)
- ^aSample collected in Feb 2021; no intervening systemic anticancer therapy prior to patient initiating KO-2806 treatment in Dec 2023

Key considerations

- Deep and durable response in a patient with HRAS-m salivary gland carcinoma
- Supports monotherapy clinical activity

Figure 5. Scans from a responder treated with KO-2806 8 mg

May 2025

on treatment

Response:

Initiated KO-2806 8 mg treatment in

PR (60% tumor shrinkage at

As of data cutoff, patient remained

week 8 vs baseline)

cPR, confirmed partial response; SoD, sum of diameters; TL, target lesion.

- 70-year-old male patient with stage IVa head and neck squamous cell carcinoma (HNSCC) (Figure 5)
- HRAS G13V, VAF: 61%^a
- PD-L1 combined positive score: 60%^a
- Prior therapies:
- Marginal mandibulectomy + modified radical neck dissection (Oct 2022)
- Adjuvant radiotherapy (Jan to Feb 2023) 1L carboplatin + paclitaxel (CP) + pembrolizumab (P) then P (Sep 2023
- to Jul 2024)
- 2L CP + P (Sep to Dec 2024)
- 3L cetuximab + ficlatuzumab (Feb 2025 to Apr 2025)

^aSample collected in Jan 2024; patient received 3 treatment lines from time of biopsy to KO-2806 treatment initiation.

Key considerations

- Deep, early response in a 4L patient with advanced HRAS-m HNSCC
- Indicates monotherapy clinical activity

Pharmacokinetics

• KO-2806 demonstrated a linear, dose-proportional increase in exposure with doses up to 10 mg

CONCLUSIONS

- KO-2806 (darlifarnib) demonstrates a manageable safety and tolerability profile with preliminary PK data supporting QD dosing
- Encouraging monotherapy antitumor activity was observed at multiple doses (KO-2806 3–10 mg) in advanced HRAS-m solid tumors, evidencing a broad therapeutic window
- KO-2806 is currently being evaluated in combination with cabozantinib (in renal cell carcinoma) and adagrasib (in KRAS-G12C-m non-small cell lung cancer, colorectal cancer, or pancreatic duct adenocarcinoma) in the phase 1 FIT-001 study (NCT06026410)¹⁰

References 1. Mijimolle N et al. Cancer Cell 2005;7:313-24; 2. Whyte

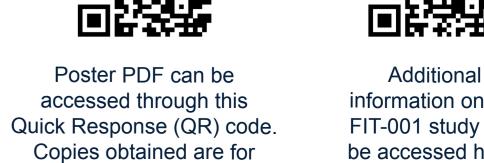
DB et al. J Biol Chem 1997;272:14459-64; 3. McGeady P et al. J Biol Chem 1995;270:26347-51; 4. Castro AF et al. J Biol Chem 2003;278:32493-6; 5. Ho AL et al. J Clin Oncol 2021;39:1856-64; 6. Ho AL et al. Ann Oncol HV et al. Poster (abstract #34968) presented at the 36th EORTC-NCI-AACR Symposium, October 11-15, 2023, Bostor MA, USA; 9. Smith A et al. Poster (abstract #34971) presented at the 36th EORTC-NCI-AACR Symposium, October 11–15, 2023, Boston MA, USA; 10. Ayanambakkam A et al. Poster (abstract #70) presented at the Kidney Cancer Research Summit (KCRS), July 17–18, 2025, Boston MA, USA.

Acknowledgements

The authors would like to thank the patients, their families, and their caregivers, as well as the FIT-001 study investigators and their study teams.

Disclosures

This study was sponsored by Kura Oncology, Inc. Medical writing assistance was provided by Oxford PharmaGenesis, Inc., with funding from Kura Oncology, Inc. GJH: Employment - Dana-Farber Cancer Institute; Honoraria - Massachusetts Medical Society: Consulting or Advisory Role - Bicara Therapeutics, Boxer Capital, Bristol Myers Squibb, Coherus Biosciences, Elevar Therapeutics, Grey Wolf Therapeutics, InhibRx, KSQ Therapeutics, Kura Oncology, Merck, Naveris, Nextech Invest, PDS Biotechnology, Remix Therapeutics, Replimune, Surface Oncology; Institutional Research Funding - Actuate Therapeutics, Adenoid Cystic Carcinoma Research Foundation, ASCO, Bicara Therapeutics, Bristol Myers Squibb, Gateway for Cancer Research, Genentech,


ImmunityBio, Kura Oncology, Regeneron, Secura Bio.

AE, adverse event; AKT, protein kinase B; amp, amplified; BOR,

best overall response; CI, confidence interval; CP, carboplatin + paclitaxel; cPR, confirmed partial response; CR, complete response: CRC, colorectal cancer: DCR, disease control rate: FTase, farnesyltransferase; FTI, farnesyltransferase mTORC1; mammalian target of rapamycin complex 1; NR, not reported; NSCLC, non-small cell lung cancer; ORR, objective response rate; P, pembrolizumab; PD, progressive disease; PI3K, phosphatidylinositol 3-kinase; PK, pharmacokinetic PR, partial response; PS, performance status; QD, once daily RCC, renal cell carcinoma; RHEB, Ras homolog enriched in brain; SCC, squamous cell carcinoma; SD, stable disease; SoD, sum of diameters; TL, target lesion; VAF, variant allele

For FIT-001 combination in RCC data, see Ayanambakkam et al., ESMO poster #2604P

information on the FIT-001 study can be accessed here. personal use only.