EHA2025 Congress June 12-15 | Milan, Italy

Ziftomenib in relapsed/refractory NPM1-mutant acute myeloid leukemia: phase 1b/2 clinical activity and safety results from the pivotal KOMET-001 study Amir T. Fathi¹, Pau Montesinos², Ghayas C. Issa³, James M. Foran⁴, Harry Erba⁵, Eduardo Rodríguez-Arbolí⁶, Kateryna Fedorov⁷, Maël Heiblig⁸, Florian H. Heidel⁹, Jessica K. Altman¹⁰, Maria R. Baer¹¹, Lionel Ades¹², Kristen Pettit¹³, Pierre Peterlin¹⁴, Cristina Papayannidis¹⁵, Céline Berthon¹⁶, Roland B. Walter¹⁷, Mithun Shah¹⁸, Suresh Balasubramanian¹⁹, Mohamad Khawandanah²⁰, Olga Salamero Garcia²¹, Julie Bergeron²², Yazan F. Madanat²³, Gail J. Roboz²⁴, Matthew Ulrickson²⁵, Robert L. Redner²⁶, James McCloskey²⁷, Arnaud Pigneux²⁸, Adolfo de la Fuente Burguera²⁹,

¹Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; ⁴Mayo Clinic, Jacksonville, FL, USA; ⁵Duke Cancer Center, Mayo Clinic, Jacksonville, FL, USA; ⁵Duke Cancer Institute, Durham, NC, USA; ⁶Hospital Universitario Intersitario Intersitario Intersitario Intersitaria Intersite Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBiS/CSIC), University of Seville, Spain; ⁷Vanderbilt-Ingram Cancer Center, Northwestern University, Chicago, IL, USA; ¹¹University of Seville, Spain; ⁷Vanderbilt-Ingram Cancer Center, Northwestern University, Chicago, IL, USA; ¹¹University of Seville, Spain; ⁷Vanderbilt-Ingram Cancer Center, Northwestern University, Chicago, IL, USA; ¹¹University of Seville, Spain; ⁷Vanderbilt-Ingram Cancer Center, Northwestern University, Chicago, IL, USA; ¹¹University of Seville, Spain; ⁷Vanderbilt-Ingram Cancer Center, Northwestern University, Chicago, IL, USA; ¹¹University of Seville, Sevil Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA; ¹²Hôpital Saint-Louis, Paris, France; ¹³University of Michigan, Ann Arbor, MI, USA; ¹⁴CHU de Nantes-Hôtel-Dieu, Nantes, France; ¹³University of Michigan, Ann Arbor, MI, USA; ¹⁴CHU de Nantes, France; ¹⁵IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy; ¹⁶CHU Lille, Lille, France; ¹⁷Fred Hutchinson Cancer Center, Seattle, WA, USA; ¹⁸Mayo Clinic, Rochester, MN, USA; ²¹Hospital Universitari Vall d'Hebron and Institute of Oncology (VHIO), Universitat Autonoma of Barcelona, Barcelona, Spain; ²²Hôpital Maisonneuve-Rosemont, Montréal, Quebec, Canada; ²³University of Texas Southwestern Medical Center, Gilbert, AZ, USA; ²⁶University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA, USA; ²⁶University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA, USA; ²⁶University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA, USA; ²⁶University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA, USA; ²⁶University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA, USA; ²⁶University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA, USA; ²⁶University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA, USA; ²⁶University of Pittsburgh Medical Center, Pi ²⁷Hackensack University Medical Center, Hackensack, NJ, USA; ²⁸Bordeaux Haut-Leveque University Hospital, Pessac, France; ²⁹MD Anderson Cancer Center, Buffalo, NY, USA

Background

- *NPM1*-m drives leukemogenesis in ~30% of AML cases¹ • Despite current risk stratification, nearly half of patients will have R/R disease within a year, after which, outcomes are
- poor for high-risk patients, with <10% CR following venetoclax-based therapy²⁻⁴
- Ziftomenib a potent, highly selective, oral, investigational menin inhibitor (Figure 1) – has shown clinical activity as monotherapy and in combination for adults with R/R *NPM1*-m and *KMT2A*-r AML, with 600 mg QD as the monotherapy RP2D for *NPM1*-m AML^{5,6}

Figure 1. Ziftomenib Mechanism of Action⁷⁻¹⁶

Aim

• Here, we present the primary analysis for patients with R/R NPM1-m treated with ziftomenib 600 mg QD in the pivotal KOMET-001 study (NCT04067336)

Methods

Study design

- KOMET-001 is a pivotal phase 1/2 study of ziftomenib in adults with R/R AML
- Here in the registration-enabling phase 2 part, we evaluated the clinical activity and safety of ziftomenib in adults with R/R *NPM1*-m AML treated with 600 mg QD (**Figure 2**)

Figure 2. KOMET-001 Study Design Phase 1b Phase 2 Phase 1a egistration-Enabling Expansion **Dose Escalatio** (n=20) (n=92) Ziftomenib Enrollment Completed Completed 50–1000 mg QE Expansion of 600 mg QD 600 mg QD NPM1-m NPM1-m Phase 1b alidation Cohor **Primary Endpoints Primary Endpoints** Safety CR/CRh (Historical • PK Cohort 1 Benchmark of 12%)¹⁷ Remission • PD ftomenib 200 mg QE Cohort 2: Key Secondary Endpoints 🛛 Key Secondary Endpoints Ziftomenib 600 mg C Duration of CR/CRh Additional remission rates Duration of response CRc Transfusion independence^a ORR • MRD-negativity^b MRD-negativity^b • OS^c Duration of response OS℃ Transfusion independence AEs

^aDefined as the absence of red blood cell and platelet transfusions for at least 56 consecutive days in the post-baseline period. ^bDefined as reaching at least one post-baseline MRD-negative result. ^cDefined as the time from the date of first dose to the date of death due to any cause.

Results

Patients

- reason (n=2)

Table 1. Baseline Characteristics: R/R NPM1-m AML

Ziftomenib RP2D 600 mg QD						
\mathbf{O}	Phase 2 Pooled Phase 1					
Characteristic, n (%)"	(N=92)	(N = 112)				
Age, years, median (range)	69 (33–84)	69 (22–86)				
18–64 years	33 (36)	42 (38)				
≥65 years	59 (64)	70 (63)				
Female	49 (53)	63 (56)				
Race						
White	75 (82)	88 (79)				
Non-White	17 (18)	24 (21)				
Region						
United States/Canada	45 (49)	57 (51)				
Europe	47 (51)	55 (49)				
ECOG PS 0	27 (29)	30 (27)				
1	49 (53)	63 (56)				
2	16 (17)	19 (17)				
Bone marrow aspirate blasts %, median (range)	39.5 (0.5–98)	44.0 (0.5–98)				
Co-mutations, n/N ^b (%)						
FLT3-ITD	38/84 (45)	43/102 (42)				
<i>FLT3</i> -TKD	9/84 (11)	11/102 (11)				
<i>IDH1-</i> m	10/80 (13)	13/97 (13)				
<i>IDH2</i> -m 16/81 (20) 22/96 (23)						
Prior therapies, median (range) 2 (1–7) 2 (1–7)						
1 32 (35) 37 (33)						
2	30 (33)	37 (33)				
≥3	≥3 30 (33) 38 (34)					
Prior HSCT	22 (24)	26 (23)				
Prior venetoclax	54 (59)	67 (60)				
Prior menin inhibitor	1 (1)	1 (1)				
^a Unless otherwise specified. ^b Among patients with available co-mutation data at baseline.						
Antitumor Activity						
Primary phase 2 endpoint of C	 Primary phase 2 endpoint of CR/CRh was met (<i>P</i>-value = 0.0058)* 					
Response and duration of response are shown in Table 2						
 For phase 2 patients, median time to CR/CRh (range) was 						
2.8 months (1.0–15.0); median time to overall response was						
1.9 months (0.8–3.7)						
 CR/CRh rates were comparable across prespecified subgroups, 						
(Figure 3)	IOCIAX, OF FLI 3/IDI	7 CO-MULATIONS				
• OS of the pooled phase 1h/2 population is shown in Figure /						

Poster presented at: The European Hematology Association 2025 Congress; June 12–15, 2025; Milan, Italy Originally presented at: The American Society of Clinical Oncology Annual Meeting; May 30–June 3, 2025; Chicago, IL, USA & Online

Marilyn Tabachri³⁰, Zijing Zhang³⁰, Marcie Riches³⁰, Daniel Corum³⁰, Mollie Leoni³⁰, Eunice S. Wang³¹

• From January 26, 2023 to May 13, 2024, patients were enrolled to the phase 2 study across 40 sites and 7 countries

• Pooled supportive analyses included 112 patients (92 from phase 2; 20 from phase 1b)

• As of the data cutoff date (December 20, 2024), 9 patients in the phase 2 part were receiving ziftomenib and 83 had discontinued due to progressive disease (n=34), AEs (n=17), lack of efficacy (n=12), patient withdrawal (n=8), death (n=3), or another reason (n=9) All 20 patients from phase 1b discontinued due to progressive disease (n=9), AEs (n=6), death (n=2), patient withdrawal (n=1), or another

• Baseline characteristics were similar between the phase 2 and pooled

phase 1b/2 populations (**Table 1**)

US of the pooled phase TD/Z population is shown in **Figure 4** • TI in R/R *NPM1*-m AML patients is shown in **Figure 5** *Based on primary analysis datacut (October 28, 2024).

Table 2. Response and Duration of Response: R/R NPM1-m AML				
	Ziftomenib RP2D 600 mg QD			
	Phase 2 (N=92)	Pooled Phase 1b/2 (N=112)		
CR/CRh, n (%)	21 (23)	28 (25)		
Overall response, n (%)	30 (33)	39 (35)		
CR	13 (14)	20 (18)		
CRh	8 (9)	8 (7)		
CRi/CRp	3 (3)	4 (4)		
MLFS	5 (5)	6 (5)		
PR	1 (1)	1 (1)		
Other ^a , n (%)	62 (67)	73 (65)		
Duration of response, months, median (9	95% CI)			
CR/CRh	3.7 (1.9–NE)	3.7 (1.9–7.7)		
CRc	4.6 (2.8–11.4)	5.1 (2.8–8.1)		
ORR	4.6 (2.8–11.4)	4.6 (3.6–7.7)		
Restricted mean duration of response ^b , r	nonths (95% CI)			
CR/CRh	4.3 (3.1–5.6)	5.2 (3.6–6.7)		
CRc	5.9 (4.0–7.7)	6.4 (4.6–8.1)		
ORR	5.9 (4.4–7.5)	6.5 (4.9–8.1)		
MRD negativity, n/N ^c (%)	12/19 (63)	17/26 (65)		

^aStable disease/no response/clinical benefit/progressive disease/not evaluable. ^bDefined as the expected duration of response (area under the Kaplan-Meier curve, up to the time point when ≥10% of patients remain at risk). Among CR/CRh responders evaluated for MRD (centrally tested)

Figure 3. Comparable CR/CRh Rates in Key Subgroups (Phase 2)

С	R/CRh Rate, % (9	5% CI)	No. of CR/CRh / No. of Patients
Overall	23 (15–33)	⊢	21/92
Region United States/Canada Europe	29 (16–44) 17 (8–31)		13/45 8/47
FLT3 co-mutation status FLT3-ITD FLT3-TKD FLT3-ITD/TKD wildtype	13 (4–28) 33 (8–70) 32 (18–48)		5/38 3/9 13/41
<i>IDH1</i> co-mutation status <i>IDH1</i> -m <i>IDH1</i> wildtype	50 (19–81) 20 (11–31)	F	
<i>IDH2</i> co-mutation status <i>IDH2</i> -m <i>IDH2</i> wildtype	31 (11–59) 22 (12–34)		5/16 14/65
Number of prior therapie 1 2 ≥ 3	s 28 (14–47) 17 (6–35) 23 (10–42)		9/32 5/30 7/30
Prior HSCT Yes No	18 (5–40) 24 (15–36)		4/22 17/70
Prior venetoclax Yes No	24 (14–38) 21 (10–37)	0 10 20 30 40 50 60 70 0 0 10 20 30 40 50 60 70	13/54 8/38 80 90 100
		UR/URN Rate (%	

Figure 4. OS in All Patients (A) and by Response Type (B)^a

Non-Responders 73 57 44 36 24 19 17 14 13 11 7 6 5 4 3 2 2 2 1 0 ^a24 Patients remained alive at last follow-up, with 9 patients on-treatment.

All Patients (Pooled Phase 1b/2)
Median OS – months (95% CI)
6.1 (3.8–8.4)

		All Patients
	0	0
3 17 18 19 20 21 22 23	24 25 26 27 28 29 30) 31 32 33 34 35 36 37
Months		

	Total	Red Blood Cells	
TI conversion rate ^a	21% (17/82)	24% (18/75)	
95% CI [⊳]	13–31	15–35	
TI maintenance rate ^c	20% (2/10)	12% (2/17)	
95% CI⁵	3–56	2–36	

and remain TI post-baseline divided by the total number of patients who were TI at baseline. anticancer treatment (HSCT).

Safety and Tolerability

- Ziftomenib was well tolerated, with a safety profile consistent with previous studies,^{5,6} including:
- Low rates of ziftomenib-related myelosuppression
- No clinically significant ziftomenib-associated QTc prolongation: 3 patients (3%): 1 Grade 2, 2 Grade 3 (all investigator-assessed). All 3 patients were also on additional medications associated with QTc prolongation (2 had electrolyte abnormalities, 1 had prior diagnosis of atrial fibrillation)
- Manageable differentiation syndrome (15 [13%] had Grade 3 events; no Grade 4–5 events)
- 3% of patients discontinued due to ziftomenib-related AEs • All treatment-emergent AEs (any-cause) and ziftomenib-related AEs are shown in Table 3

Table 3.	Treatment-Eme	rgent (Ar	ny-Cause) a	and Treat	ment

	Ziftomenib RP2D 600 mg QD			
	Phase 2		Pooled Pl	nase 1b/2
$\Delta Fs n (\%)$	(N=92)		(N=)	$\frac{112}{2}$
Any $AE (> 20\% \text{ of all nationts})$	Any Graue	Braue ≥ 3	112 (100)	$Grade \ge 3$ 105 (04)
Hematologic AEs	32 (100)	00 (93)	112 (100)	103 (34)
	20 (22)	18 (20)	25 (22)	23 (21)
Febrile neutronenia	20 (22)	24(26)	25(22)	25(21) 25(22)
Thromboovtonenia	2 4 (20) 18 (20)	24 (20) 18 (20)	23 (22)	23 (22)
	10 (20)	10 (20)	22 (20)	22 (20)
	27 (20)	1 (1)	36 (32)	5 (1)
Nausaa	27 (23)	1 (1)	30(32)	$\frac{3}{(4)}$
Hypokalomia	23(23)	1 (1) 12 (12)	20(26)	1 (1) 13 (12)
	22 (24) 22 (25)	12 (13) 14 (15) a	29 (20)	13 (12) 15 (12)a
Differentiation syndrome	23 (23)	14 (15)"	27 (24)	15 (13)"
Pruntus	ZT (Z3)	0	20 (23)	0
Penpheral edema	23 (25)		25 (22)	
Pneumonia	19 (21)	13 (14)	24 (21)	17 (15)
Any ziftomenib-related AE in \ge 5% 64 (70) 37 (40) 77 (69) 45 of all patients			45 (40)	
Hematologic AEs				
Anemia	5 (5)	5 (5)	6 (5)	6 (5)
Neutropenia	6 (7)	6 (7)	6 (5)	6 (5)
Nonhematologic AEs				
Differentiation syndrome	22 (24)	14 (15) ª	26 (23)	15 (13) ^a
Pruritus	15 (16)	0	16 (14)	0
Nausea	8 (9)	0	13 (12)	0
Diarrhea	8 (9)	0	10 (9)	2 (2)
ALT increased	6 (7)	2 (2)	7 (6)	2 (2)
Decreased appetite	5 (5)	0	6 (5)	0

aNo patients had Grade 4–5 differentiation syndrome.

t-Related AEs

Conclusions

In the pivotal KOMET-001 phase 2 study, the primary endpoint was met

- Ziftomenib achieved clinically meaningful, MRD-negative responses in this heavily pretreated R/R NPM1-m AML population
- Response rates were similar regardless of prior therapies received, including HSCT and venetoclax

Ziftomenib monotherapy was well tolerated with a safety profile consistent with previous studies^{5,6}

- Low rates of ziftomenib-related myelosuppression
- 3% of patients discontinued due to ziftomenib-related AEs
- No clinically significant QTc prolongation was observed
- Differentiation syndrome was managed with protocol-specified mitigation strategies; there were no Grade 4–5 events

New drug application (NDA) submitted for ziftomenib monotherapy as a new potential treatment option for R/R NPM1-m AML

Ziftomenib combination studies are currently ongoing in both newly diagnosed and R/R AML (KOMET-007, KOMET-008)

Abbreviations

AE, adverse event; ALT, alanine aminotransferase; AML, acute myeloid leukemia CR, complete remission; CR/CRh, complete remission with full or partial hematologic recovery; CRc, composite complete remission; CRh, complete remission with partial hematologic recovery; CRi/CRp, CR with incomplete hematologic or platelet recovery ECOG PS, Eastern Cooperative Oncology Group performance status; HSCT, hematopoietic stem cell transplantation; ITD, internal tandem duplication m, mutant; MLFS, morphologic leukemia-free state; MRD, measurable residual disease; NE, not estimable; ORR, overall response rate; OS, overall survival PD, pharmacodynamics; PK, pharmacokinetics; QD, once daily; QTc, QT corrected; R/R, relapsed/refractory; RP2D, recommended phase 2 dose; TD, transfusion dependent; TI, transfusion independence; TKD, tyrosine kinase domain

References

- Issa GC et al. *Leukemia*. 2021;35(9):2482-95.
- Koschade SE et al. Ann Hematol. 2022;101(8):1703-10. Zainaldin C et al. Leuk Lymphoma. 2022;63(13):3245-8.
- Maiti A et al. *Haematologica*. 2021;106(3):894-8.
- Wang ES et al. Lancet Oncol. 2024;25(10):1310-24.
- Fathi AT et al. Blood. 2024;144(Suppl 1):2880 Collins CT, Hess JL. Curr Opin Hematol. 2016;23(4)354-61.
- Lu R et al. Cancer Cell. 2016;30(1):92-107.
- Ferreira HJ et al. Oncogene. 2016;35(23):3079-82.
- 10) Jeong M et al. Nat Genet. 2014;46(1):17-23. 11) Wang GG et al. *Blood*. 2005;106(1):254-64.
- 12) Chowdhury R et al. EMBO Rep. 2011;12(5):463-9.
- 13) Schmidt L et al. Leukemia. 2019;33(7):1608-19.
- 14) Xu H et al. Cancer Cell. 2016;30(6):863-78
- 15) Brunetti L et al. Cancer Cell. 2018;34(3):499-512 16) Wang XQD et al. *Cancer Discov*. 2023;13(3):724-5.
- 17) Smith CC et al. *Blood Adv*. 2022;6(7):2144-55.
- **Contact information:** Dr Amir T. Fathi, email: <u>AFATHI@mgh.harvard.edu</u>

Acknowledgments: The authors would like to thank the patients, their families, and their caregivers, as well as the KOMET-001 study investigators and their study teams. This study was sponsored by Kura Oncology, Inc. Medical writing support was provided by Oxford PharmaGenesis Inc., with funding from Kura Oncology, Inc.

> Poster PDF and recording can be accessed through this Quick Response (QR) code Copies obtained are for personal use only

