TAT \$2017

15th International Congress on *Targeted Anticancer Therapies*

Preliminary evidence of clinical activity with tipifarnib in squamous cell carcinomas of the head & neck (SCCHN) with HRAS mutations

Alan Ho¹, Nicole Chau², Deborah Wong³, Maria E. Cabanillas⁴, Ranee Mehra⁵, Keith Bible⁶, Marcia S. Brose⁷, Valentina Boni⁸, Francis Burrows⁹, Carrie Melvin⁹, Catherine Scholz⁹ and Antonio Gualberto⁹

¹ Memorial Sloan Kettering Cancer Center, New York, NY USA; ² Dana Farber Cancer Institute, Boston, MA USA; ³ UCLA Medical Center, Santa Monica, CA USA; ⁴ The University of Texas MD Anderson Cancer Center, Houston, TX, USA; ⁵ Fox Chase Cancer Center, Philadelphia, PA, USA; ⁶ Mayo Clinic, Rochester, MN, USA; ⁷ Abramson Cancer Center at the University of Pennsylvania School of Medicine, Philadelphia, PA USA; ⁸ START Madrid-CIOCC, Madrid, Spain; ⁹ Kura Oncology, La Jolla, CA, USA

Alan Ho MD PhD

1.	Kura Oncology	Research Support
2.	AstraZeneca	Research Support, Consulting
3.	Eisai	Research Support, Advisory Board
4.	Bristol Myers Squibb	Research Support, Advisory Board
5.	Novartis	Research Support, Advisory Board
6.	Merck	Advisory Board
7.	Genzyme	Advisory Board

Farnesyltransferase inhibitors (FTIs): Targeting HRAS

- The **RAS superfamily (KRAS/NRAS/HRAS)** require the covalent addition of a hydrophobic group to the C-terminal tail (known as "prenylation") for membrane localization and downstream signaling.
- Farnesyltransferase (FT) catalyzes the attachment of farnesyl groups to RAS proteins and other cell signaling proteins.
- NRAS and KRAS are susceptible to redundant forms of prenylation, <u>but HRAS is uniquely</u> <u>dependent upon farnesylation alone</u>.

TAT 8 2017

CENTRAL HYPOTHESIS: HRAS driven malignancies are uniquely susceptible anti-tumor effects FTI therapy.

Tipifarnib: First-in-class FTI

- Potent/highly selective inhibitor of farnesyltransferase (FT) that competitively binds the CAAX binding site¹.
- Previously studied in > 5,000 patients (70+ studies)
- Previous trials <u>without genetic selection</u> yielded insufficient clinical activity to support registration, though anecdotal evidence of single agent activity had been reported.
- Manageable safety profile as single agent therapy (<25% treatment discontinuation).

<u>Tipifarnib AEs (472 solid tumors pts)</u>: Myelosuppression (neutropenia 25%, anemia 31%, thrombocytopenia 19%); non-hem >25%: fatigue (41%) and GI unspecific (nausea 47%, anorexia 33%, diarrhea 32%, vomiting 32%).

Tipifarnib (in-licensed by Kura Oncology from Janssen)

HRAS Mutant Tumors: Tipifarnib Susceptibility

Phase II Design to Evaluate Tipifarnib in HRAS Mutant Cancers

Tipifarnib: 900 mg bid daily on Days 1 - 7 and 15 - 21 in 28-day cycles

Simon two-stage design for ORR (each cohort):

Stage I: Need 2 CR/PRs in the first 11 patients

Stage II: If Stage I criteria met, enroll 7 patients

(For 10% (H0) vs 30% (H1) ORR, targeting >4 CR/PRs out of 18)

Tipifarnib in *HRAS* Mutant Squamous Cell Carcinomas of the Head and Neck (SCCHN)

- Cohort 1 (*HRAS* mutant thyroid carcinomas) still enrolling to the Stage I.
- Cohort 2 enrollment to Stage I has been completed (n=11):

HRAS mutant SCCHN (3): 2 cPRs and 1 SD (~7 mos) *HRAS* mutant salivary gland tumors (5): 3 SDs > 6 months

- Cohort 2 has advanced to Stage II, and only enrolling HRAS mutant SCCHN to further explore this signal.
- Tipifarnib was generally well tolerated with AEs consistent with the known safety profile.

KO-TIP-001 Best Response and Status

STUDY CYCLE

001-001: epithelial-myoepithelial ca; 005-001: mucoepidermoid ca; 005-008: Poorly differentiated adenoca; 006-001: Salivary duct ca; 008-002: Oncocytic ca

TAT S2017

SD: Sum of Diameters; PD NTL: Progression of Disease at Non-Target Lesions

HRAS Mutations Define a Unique SCCHN Molecular Subset

- Missense Mutation (putative driver)
- Missense Mutation (putative passenger)

TAT 8 2017

Truncating Mutation

- SCCHN express high levels of *HRAS*².
- HRAS mutant SCCHN (~6% at initial diagnosis) characterized by frequent CASP8 mutations and low rate of TP53 mutation³.
- HRAS mutation may result from carcinogenesis (e.g. tobacco exposure)⁴.
- 1. TCGA data. Gao et al. 2013. Sci Signal 6:pl1; Cerami et al 2012. Cancer Discov. 2:401-4
- 2. Cancer Genome Atlas Network 2015. Nature 517:576-82.
- 3. Cancer Genome Atlas Research Network 2012. Nature 489:519-25
- 4. Sathyan et al. 2007. Modern Path 20, 1141-8

Emergence of *RAS* Mutations Is Associated with Acquired Cetuximab Resistance in SCCHN Patients

- 2/46 (4.3%) SCCHN tumors possessed an *HRAS* mutation.
- 20 SCCHN pts receiving cetuximab plus platinum/5-fluoruracil had ctDNA collected/analyzed during and after therapy.
 - 6/13 (46%) patients with on-treatment disease progression acquired RAS mutations, half of which were HRAS mutations (3/13, 23%).
 - No RAS mutations were found in the remaining 7 patients without progression on therapy.
 - Emergence of RAS mutations associated significantly with progression on cetuximab-based treatment (Chi-square P=0.032).

HRAS Mutant SCCHN PDXs are Sensitive to Tipifarnib and Resistant to Cetuximab and Chemotherapy

Patient 005-005

- Elderly white male with a metastatic SCCHN (primary tracheal tumor and prior history of nasal SCC)
 - Received 2 cycles of paclitaxel, carboplatin and cetuximab with a mixed response
 - $\circ~$ Further treatment with paclitaxel and cetuximab followed by cetuximab and radiation
- Non hotspot HRAS Q22K (WT for TP53, CASP8, PIK3CA)
 - Observed in Costello syndrome (tumor predisposition syndrome due to germline HRAS mutations)¹
 - Equivalent KRAS Q22K mutation known to be tumor-related^{2,3}
- Partial Response at C2D22 (confirmed at C4), on tipifarnib for >1 year (currently in C19)

^{1.} van der Burgt et al. J Med Genet. 2007 ; 44: 459–62.

^{2.} Metro et al. Ecancermedicalscience. 2015; 9: 559.

^{3.} Azzato et al. Anticancer Research 2015 ;35 no. 5 3007-12

005-005: Partial Response

08/17/2015 (Baseline) 12/22/2015 (Cycle 4 Day 22)

TAT \$132017

Patients 005-007 and 005-009

Patients 005-007 and 005-009 are two male subjects with advanced oral cavity SCCHN tumors that carry the *HRAS* hotspot mutation Q61K.

- Patient 005-007 tumor: 16 additional mutations, including a MAPK1 E322K mutation (WT for CASP8/TP53/PIK3CA). Medical history included diagnosis of dyskeratosis congenita.
- Patient 005-009 tumor: TP53 mutant; WT for CASP8 and PIK3CA.
- Both patients failed cetuximab either as monotherapy (005-007) or in combination with chemotherapy (005-009) (PD at cycle 2).

Summary

- *HRAS* mutant SCCHN represents a biologically and clinically distinct subset of disease.
- Acquired resistance to cetuximab in RAS WT SCCHN may be related to emergence of RAS mutations.
- A subset of *HRAS* mutant SCCHN may be sensitive to tipifarnib, potentially representing a therapeutic alternative to EGFR targeting.
- Expansion of the phase II trial to recruit *HRAS* mutant SCCHN will seek to verify the potential tipifarnib signal in this disease subset.

Acknowledgements

- KO-TIP-001 investigators and research personnel
- Kura Oncology
- Our patients and their families

