

American Society of Hematology Helping hematologists conquer blood diseases worldwide

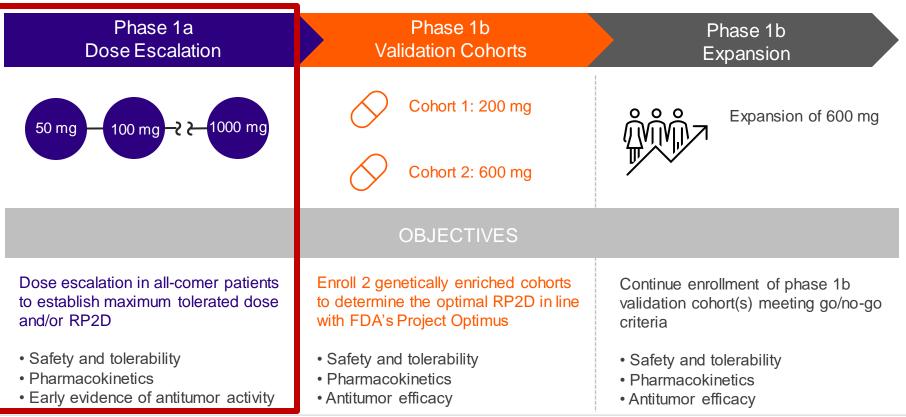
Update on a Phase 1/2 First-in-Human Study of the Menin-KMT2A (MLL) Inhibitor Ziftomenib (KO-539) in Patients with Relapsed or Refractory Acute Myeloid Leukemia

Harry P. Erba¹, Amir Fathi², Ghayas Issa³, Jessica Altman⁴, Pau Montesinos⁵, Mrinal Patnaik⁶, James Foran⁷, Stephane DeBotton⁸, Maria Baer⁹, Gary Schiller¹⁰, Roland Walter¹¹, Marina Kremyanskaya¹², Kristen Pettit¹³, Stephen Strickland¹⁴, Blake Tomkinson¹⁵, Marilyn Tabachri¹⁵, Mollie Leoni¹⁵, Stephen Dale¹⁵, Eunice S. Wang¹⁶

¹Duke Cancer Institute, Duke University Medical Center, Durham, NC; ²Massa chusetts General Hospital, Harvard Medical School, Boston, MA; ³MD Anderson Cancer Center, Houston, TX; ⁴Northwestern Feinberg School of Medicine, Chicago IL; ⁵Hospital Universitari i Politècnic La Fe, Valencia, Spain; ⁶Mayo Clinic, Rochester, MN; ⁷Mayo Clinic, Jacksonville, FL; ⁸Institut Gustave Roussy Service d'Hématologie Clinique, Villejuif, France; ⁹Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD;¹⁰David Geffen School of Medicine at University of California – Los Angeles, Los Angeles, CA; ¹¹Fred Hutchinson Cancer Research Center, Seattle, WA; ¹²Icahn School of Medicine at the Mount Sinai Hospital, New York, NY; ¹³University of Michigan Medical School, Michigan Medicine, Ann Arbor, MI; ¹⁴Vanderbilt-Ingram Cancer Center, Nashville, TN; ¹⁵Kura Oncology, Inc., San Diego, CA; ¹⁶Roswell Park Comprehensive Cancer Center, Buffalo, NY

NPM1-m and *KMT2A(MLL)*-r AML Represent a Significant Unmet Need No FDA-Approved Targeted Therapies Exist Today

NPM1-mutant AML KMT2A-rearranged AML ~6,000 new cases annually in U.S.¹ ~1,000-2,000 new cases annually in U.S.¹ ~30% ~5-10% AML Adult patients with NPM1-m and select co-mutations Adult patients with KMT2A-r have poor prognosis with high rates of resistance and relapse following SoC⁴⁻⁵ and/or R/R disease are associated with poor prognosis² 5-year Overall Survival ~50%³ 5-year Overall Survival < 20%⁴ NPM1c 5 40 ΚΜΤ2Α MLL Leukemia Menir oft Ziftomenib oft Ziftomenib KMT2A Menin Menin Differentiation Differentiation



American Society of Hematology

Kühn MW, et al. Cancer Discov. 2016;6(10):1166-1181 Thorsteinschtir U, et al. Mol Cel Bid. 2001;2(1):224-234 Patel SS, et al. Curr Hematol Malig Rep. 2020;15(4):350-359 Brunetti L, et al. Carner Cell. 2018;34(3):499-512 SEER statistics for ANL in the US, accessed April 2020
 Döhner et al. Blood. 2017 Jan 26;129(4):424-447
 Angenendt L, et al. J Clin Oncol. 2019;37(29):2632:2642
 Issa GC, et al. Blood Cancer J. 2021;11(9):162
 Vetro C, et al. Cancer Genet 2020:20175-22

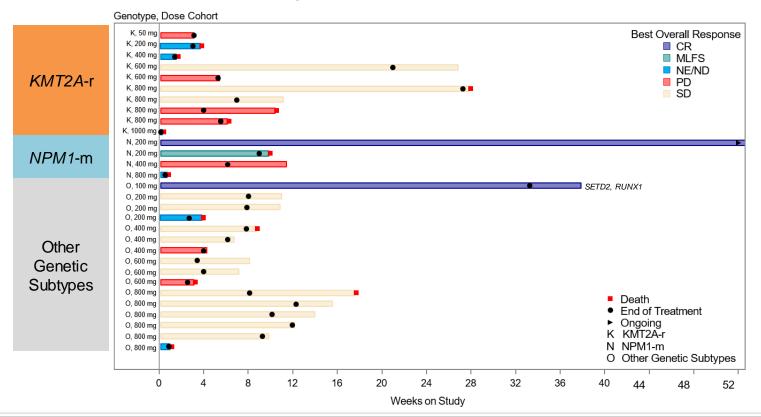
KOMET-001 Phase 1a Clinical Trial of Ziftomenib in Patients with Relapsed or Refractory (R/R) AML

Phase 1a Dose Escalation – Demographics

Demographics	All Patients (N = 30)
Median age - n (Min, Max)	65.5 (22, 85)
Male – n (%)	17 (56.7)
ECOG PS 1 – n (%)	19 (63.3)
ECOG PS 2 – n (%)	6 (20.0)
<i>KMT</i> 2 <i>A</i> -r–n (%)	10 (33.3)
<i>NPM1-</i> m–n (%)	4 (13.3)
Non <i>KMT2A-r/NPM1-</i> m – n (%)	16 (53.3)
Median no. of prior therapies - n (Min, Max)	3.5 (1, 9)
Prior venetoclax – n (%)	22 (73.3)
Prior SCT – n (%)	7 (23.3)

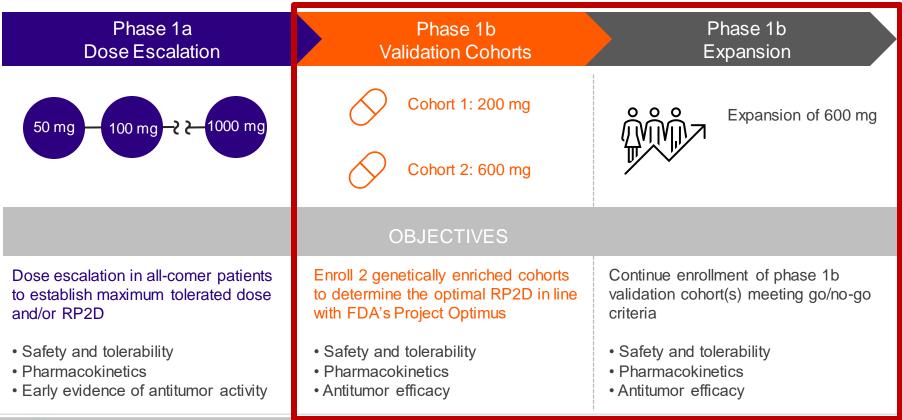
Phase 1a Dose Escalation – Safety

≥Gr3 TEAEs (All Causality) Preferred Term	50 mg (N = 1) n (%)	100 mg (N = 1) n (%)	200 mg (N = 6) n (%)	400 mg (N = 5) n (%)	600 mg (N = 5) n (%)	800 mg (N = 11) n (%)	1000 mg (N = 1) n (%)
Anemia	0	0	2 (33.3)	1 (20.0)	3 (60.0)	2 (18.2)	0
Pneumonia	1 (100.0)	0	2 (33.3)	1 (20.0)	0	3 (27.3)	0
Thrombocytopenia	0	0	1 (16.7)	1 (20.0)	3 (60.0)	0	0
Neutropenia	0	1 (100.0)	1 (16.7)	0	0	3 (27.3)	0
Febrile neutropenia	0	0	0	1 (20.0)	1 (20.0)	1 (9.1)	0
Decreased appetite	0	0	2 (33.3)	0	0	1 (9.1)	0


No drug-induced QT/QTc prolongation reported

Two DLTs were reported:

- 400 mg cohort (pneumonitis, post-aspiration pneumonia)
- 1000 mg cohort (differentiation syndrome)
 - Per protocol, the DLT in first patient at 1000 mg resulted in de-escalation to 800 mg


Ziftomenib Demonstrates Encouraging Early Clinical Activity in the Phase 1a, All Comer Population

KOMET-001 Phase 1b Clinical Trial of Ziftomenib in Patients with Relapsed or Refractory (R/R) AML

Phase 1b Baseline Characteristics, Demographics, and Disposition

Demographics	200 mg (N = 17)	600 mg (N = 36)	Disposition	200 mg (N = 17) n (%)
Median age - n (Min,	49.0	54.5	Patients on Treatment	0
Max)	(30, 79)	(18, 86)	Patients in Follow-Up	1 (5.9)
Male – n (%)	7 (41.2)	15 (41.7)	Reason for Treatment	
ECOG PS 1 – n (%)	7 (41.2)	22 (61.1)	Discontinuation	
<i>KMT2A</i> -r – n (%)	13 (76.5)	16 (44.4)	Adverse Event**	2 (11.8)
<i>NPM1-</i> m – n (%)	4 (23.5)	20 (55.6)	Death	4 (23.5)
Median number of prior therapies - n (Min, Max)	3.0 (1,11)	3.0 (1,7)	Disease progression	5 (29.4)
Prior venetoclax – n (%)	11 (64.7)	22 (61.1)	(including Clinical)	
Prior SCT – n (%)	5 (29.4)	8 (22.2)	Patients off Study	16 (94.1)
<i>FLT3</i> *– n (%)	3 (17.6) (100% FLT3-ITD)	7 (19.4) (57% FLT3-ITD)	Reason for Study Discontinuation	
<i>IDH1/</i> 2*– n (%)	1 (5.9)	7 (19.4)	Death	14 (82.4)
· · ·			Additional reasons for Treatment D/C i	nclude PL Decision Rec

*Patient could have both *FLT3* and *IDH1/2*, and be counted in both co-mutation categories

Additional reasons for Treatment D/C include PI Decision, Receipt of Alt Tx, and Other. Additional Reasons for Study D/C include Withdrawal by Subject and Other. ****No events were considered treatment related**

600 mg

(N = 36) n (%)

10 (27.8)

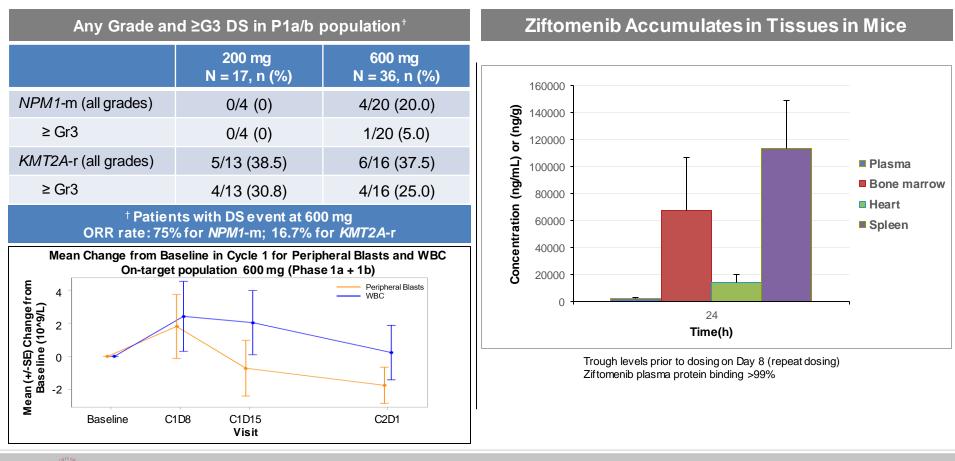
17 (47.2)

4 (11.1)

3 (8.3)

11 (30.6)

19 (52.8)

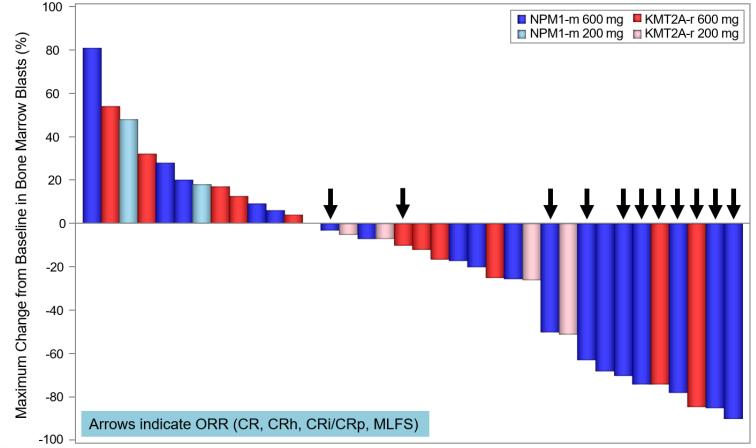

14 (38.9)

Ziftomenib Demonstrates Encouraging Safety Profile and Tolerability in Phase 1b

≥Gr 3 TEAEs Occurring in >10% Participants (Regardless of Causal Assessment)	200 mg	600 mg
<i>NPM1-</i> m	(N = 4)	(N = 20)
	0	0
<i>KMT2A</i> -r	(N = 13)	(N = 16)
Differentiation Syndrome	4 (30.8)	4 (25.0)
Febrile Neutropenia	0	2 (12.5)

Characterization of Differentiation Syndrome (DS) with Ziftomenib

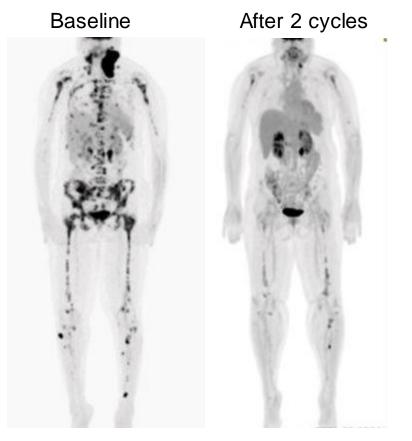
American Society of Hematology


Ziftomenib Demonstrates Encouraging Antileukemic Activity at 600 mg

Best Overall Response	200 mg	600 mg	2 pts had concurr
<i>NPM1</i> -m Phase 1a + 1b	(n=6)	(n=20)	<i>IDH1/2</i> • 2 pts had both <i>ID</i>
CR	1 (16.7)	6 (30.0)	and FLT3-ITD/TK
CR/CRh	1 (16.7)	6 (30.0)	
CRc	1 (16.7)	7 (35.0)	<i>Of IDH</i> 1/2 co-mutar 57% experienced a
MRD negativity	1 (100.0)	3 (42.9) ¹	37 /0 experienced a
ORR	2 (33.3)	8 (40.0)	
KMT2A-r Phase 1a + 1b	(n=14)	(n=18)	
CR/CRh	0	1 (5.6)	
CRc	0	2 (11.1)	
MRD negativity	0	2 (100.0)	
ORR	0	3 (16.7)	

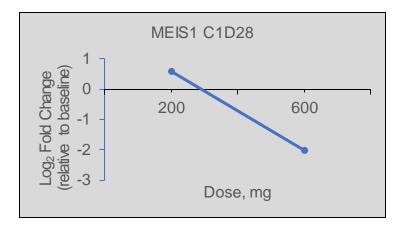
¹ MRD w as assessed for 5/7 CRc patients; 3 of those 5 patients (60%) tested w ere MRD negative CRc includes CR, CRh, CRi, CRp ORR includes CR, CRh, CRi, CRp, MLFS

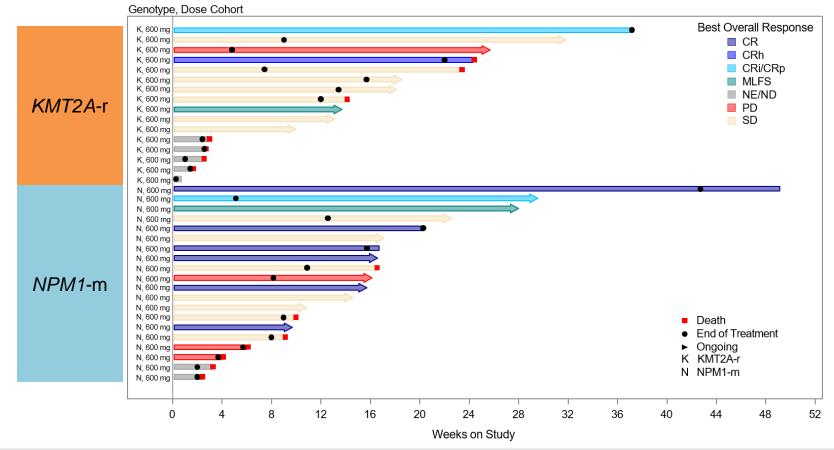
Decreasing Bone Marrow Blast Counts Consistently Reported


Ziftomenib Causes Differentiation of NPM1-mutant Leukemia

Case Example: 61 yo male with NPM1-m, FLT3- <i>ITD</i> , and <i>IDH2</i> AML Baseline bone marrow blasts: 75%			Baseline Bone Marrow Cellular BM (40%) with 75% blasts consistent with relapsed AML
Prior therapies	7+3, Midostaurin, HiDAC, gilteritinib		
Initiated ziftomenib at 6	00 mg		Cycle 1 Day 28
DS during C1	Bone pain, ↓BP WBC ↑58K		<u>Cycle 1 Day 28</u> <u>ziftomenib</u> Hypercellular BM (>95%) with striking granulocytic
Response	MLFS after Cycle 1CR after Cycle 3		hyperplasia and <1% blasts

Clinical Benefit: An Example of a *KMT2A-*r Non-Responder


Case Example: 47 yo female with <i>KMT2A-r, TERT,</i> and <i>BRAF</i> AML Baseline bone marrow blasts: 52%			
Prior therapies	ddAC + paclitaxel, CPX-35, SCT, Aza, FLAG lda-ven, DLI, RT - gums		
Initiated ziftomenib at 200 mg			
DS during C1	Muscle and EMD pain, \uparrow temp, \downarrow BP, WBC \uparrow 5.2		
Response	 Bone marrow blasts 2% end of Cycle 2 Best overall response of SD due to residual EMD 		


Pharmacokinetic/Pharmacodynamic Analyses Support 600 mg Dosing

• Dose-dependent increases in exposure support 600 mg vs 200 mg dose

- MEIS1 expression at C1D28 was 6-fold lower in patients dosed at 600 mg vs 200 mg
 - HOXA9, HOXA10, MEF2C were also 2- to 6-fold lower relative to baseline
- Target gene expression at 800 mg did not provide evidence of further knockdown

Ziftomenib 600 mg Demonstrates Optimal Clinical Benefit

S American Society of Hematology

Acknowledgements

- The patients, their families, and caregivers
- The study investigators and their study teams
- The study is sponsored by Kura Oncology, Inc.

Conclusions

Ziftomenib demonstrates an encouraging safety profile and tolerability

- Reported events most often consistent with features and manifestations of underlying disease
 - No evidence of drug-induced QTc prolongation
 - Differentiation syndrome, an on-target effect, manageable with mitigation strategy

Clinical activity of Ziftomenib monotherapy is optimal at the 600 mg dose

- Favorable NPM1-m benefit/risk balance with pronounced activity and 30% CR rate (n=20)
- High levels of ziftomenib tissue penetration likely drive clearance of extramedullary disease

Monotherapy data supportive of combination strategies

- No predicted adverse drug-drug interactions
- Optimization of *KMT2A*-r benefit/risk planned via rational combination strategies, to maximize patients' time on treatment
- Oral, QD dosing allows for convenient administration and combination with standards of care