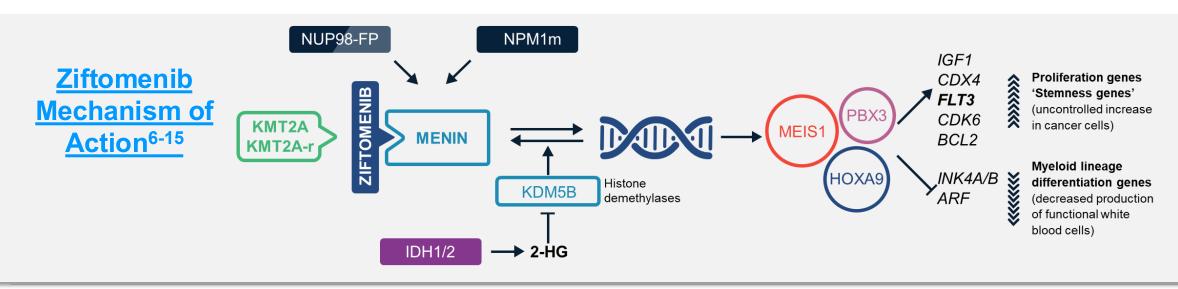
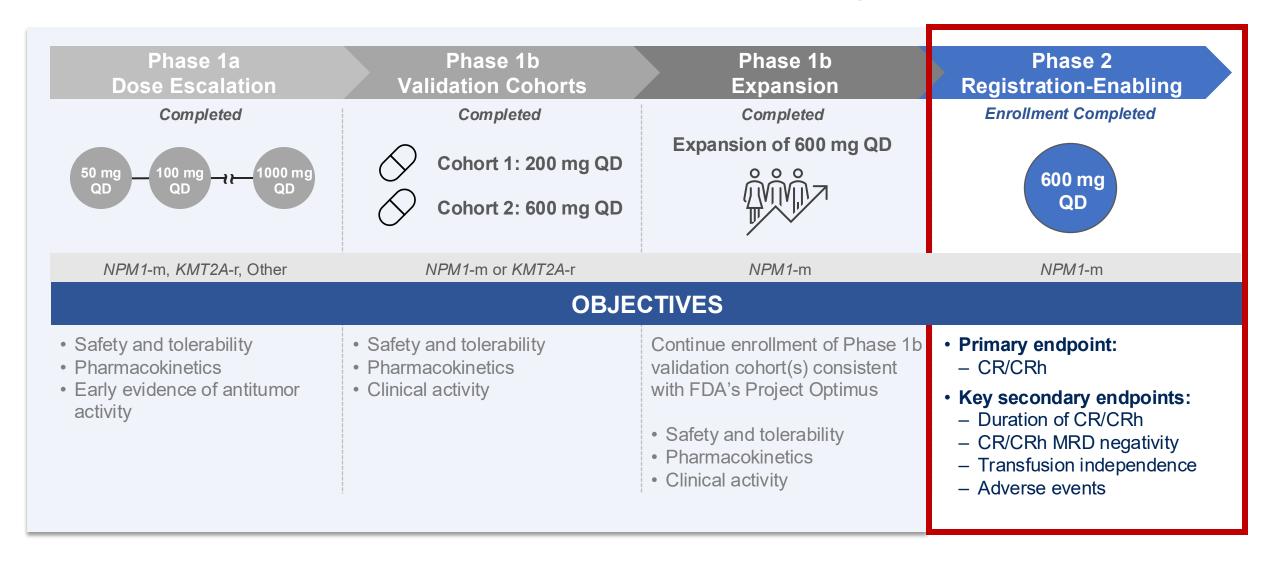


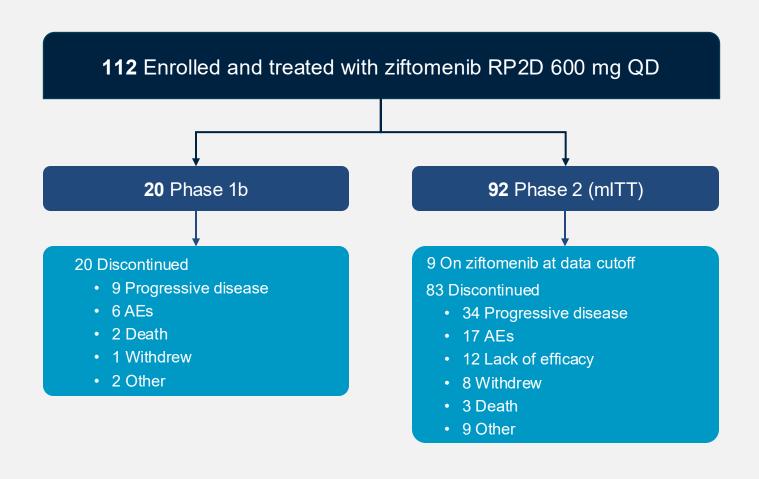
Ziftomenib in Relapsed / Refractory (R/R) NPM1-mutant Acute Myeloid Leukemia (AML): Phase 1b/2 Clinical Activity and Safety Results from the Pivotal KOMET-001 Study

Eunice S. Wang¹, Pau Montesinos², Ghayas C. Issa³, James M. Foran⁴, Harry Erba⁵, Eduardo Rodríguez-Arbolí⁶, Kateryna Fedorov⁷, Maël Heiblig⁸, Florian H. Heidel⁹, Jessica K. Altman¹⁰, Maria R. Baer¹¹, Lionel Ades¹², Kristen Pettit¹³, Pierre Peterlin¹⁴, Cristina Papayannidis¹⁵, Zijing Zhang¹⁶, Marcie Riches¹⁶, Daniel Corum¹⁶, Mollie Leoni¹⁶, and Amir T. Fathi¹⁷


¹Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA; ²Hospital Universitari i Politècnic La Fe, Valencia, Spain; ³The University of Texas MD Anderson Cancer Center, Houston, TX, USA; ⁴Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, FL, USA; ⁵Duke Cancer Institute, Durham, NC, USA; ⁶Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBiS/CSIC), University of Seville, Seville, Spain; ⁷Vanderbilt-Ingram Cancer Center, Nashville, TN, USA; ⁸Centre Hospitalier Lyon Sud, Lyon, France; ⁹Hannover Medical School, Hannover, Germany; ¹⁰Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA; ¹¹University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA; ¹²Hôpital Saint-Louis, Paris, France; ¹³University of Michigan, Ann Arbor, MI, USA; ¹⁴CHU de Nantes-Hôtel-Dieu, Nantes, France; ¹⁵IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy; ¹⁶Kura Oncology, Inc., San Diego, CA, USA; ¹⁷Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA


Ziftomenib Targets the Menin Pathway, a Foundational Target in AML

- NPM1-m drives leukemogenesis in ~30% of AML¹
- Despite current risk stratification, nearly half will have R/R disease within a year, after which outcomes are poor for high-risk patients with < 10% complete remission following venetoclax-based therapy²⁻⁴
- Ziftomenib a potent, highly selective, oral, investigational menin inhibitor has shown clinical activity as monotherapy and in combination for adults with R/R NPM1-mutant (NPM1-m) and KMT2A-rearranged (KMT2A-r) AML, with 600 mg QD as the recommended phase 2 monotherapy dose for NPM1-m AML⁵
- Here, we present the primary analysis for R/R NPM1-m patients treated with ziftomenib 600 mg QD in the pivotal KOMET-001 study (NCT04067336)



KOMET-001: Pivotal Trial of Ziftomenib Monotherapy in R/R NPM1-m AML

KOMET-001 in R/R NPM1-m AML: Efficacy & Safety Populations

- Patients enrolled from January 26, 2023 to May 13, 2024
 - 40 Sites, 7 countries
- Pooled analyses: 112 patients
 (92 Phase 2 + 20 Phase 1b)

Baseline Characteristics: R/R NPM1-m AML

	Ziftomenib RP2D 600 mg QD		
n (%)	Phase 2 (N = 92)	Pooled Phase 1b/2 (N = 112)	
Median age, yrs (range)	69 (33–84)	69 (22–86)	
18–64 yrs	33 (36)	42 (38)	
≥ 65 yrs	59 (64)	70 (63)	
Female	49 (53)	63 (56)	
Race			
White	75 (82)	88 (79)	
Non-White	17 (18)	24 (21)	
Region			
United States/Canada	45 (49)	57 (51)	
Europe	47 (51)	55 (49)	
ECOG PS			
0	27 (29)	30 (27)	
1	49 (53)	63 (56)	
2	16 (17)	19 (17)	
Bone marrow aspirate blasts %, median (range)	39.5 (0.5–98)	44.0 (0.5–98)	

	Ziftomenib RP2D 600 mg QD		
n (%)	Phase 2 (N = 92)	Pooled Phase 1b/2 (N = 112)	
Co-mutations, n/Na			
<i>FLT</i> 3-ITD	38/84 (45)	43/102 (42)	
<i>FLT</i> 3-TKD	9/84 (11)	11/102 (11)	
<i>IDH1-</i> m	10/80 (13)	13/97 (13)	
<i>IDH2</i> -m	16/81 (20)	22/96 (23)	
Median prior therapies (range)	2 (1–7)	2 (1–7)	
1	32 (35)	37 (33)	
2	30 (33)	37 (33)	
≥ 3	30 (33)	38 (34)	
Prior HSCT	22 (24)	26 (23)	
Prior venetoclax	54 (59)	67 (60)	
Prior menin inhibitor	1 (1)	1 (1)	

^aAmong patients with available co-mutation data at baseline.

• Baseline characteristics were similar between the phase 2 and pooled phase 1b/2 populations

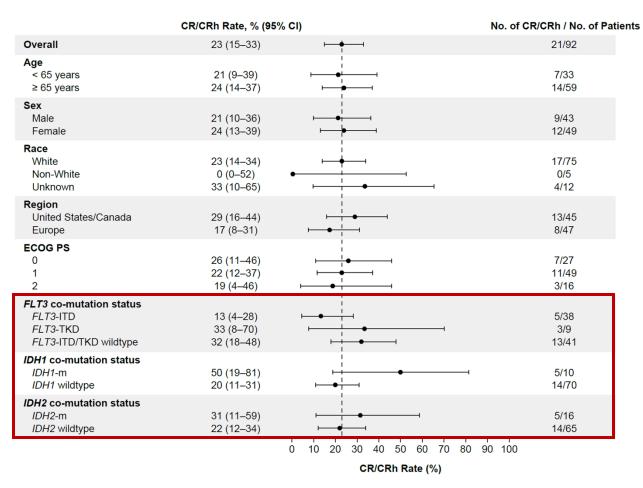
Response & Duration of Response: R/R NPM1-m AML

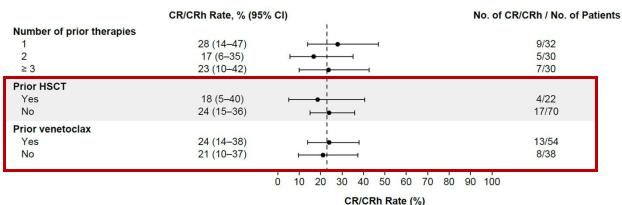
Primary Phase 2 endpoint was met (*P*-value = 0.0058)* vs. 12% historical control rate¹

	Ziftomenib RP2D 600 mg QD		
n (%)	Phase 2 (N = 92)	Pooled Phase 1b/2 (N = 112)	
CR/CRh	21 (23)	28 (25)	
Overall response	30 (33)	39 (35)	
CR	13 (14)	20 (18)	
CRh	8 (9)	8 (7)	
CRi/CRp	3 (3)	4 (4)	
MLFS	5 (5)	6 (5)	
PR	1 (1)	1 (1)	
Other ^a	62 (67)	73 (65)	
Median duration of response, months (95% CI)			
CR/CRh	3.7 (1.9-NE)	3.7 (1.9–7.7)	
CRc	4.6 (2.8–11.4)	5.1 (2.8–8.1)	
ORR	4.6 (2.8–11.4)	4.6 (3.6–7.7)	
Restricted mean duration of response ^b , months (95% CI)			
CR/CRh	4.3 (3.1–5.6)	5.2 (3.6–6.7)	
CRc	5.9 (4.0–7.7)	6.4 (4.6–8.1)	
ORR	5.9 (4.4–7.5)	6.5 (4.9–8.1)	
MRD negativity, n/N ^c (%)	12/19 (63)	17/26 (65)	

For Phase 2 patients, after a median follow-up of 4.1 months (range, 0.1–19.7):

- Median time to CR/CRh: 2.8 months (range, 1.0–15.0)
- Median time to ORR: 1.9 months (range, 0.8–3.7)


^{*}Based on primary analysis data cut (Oct 28, 2024).

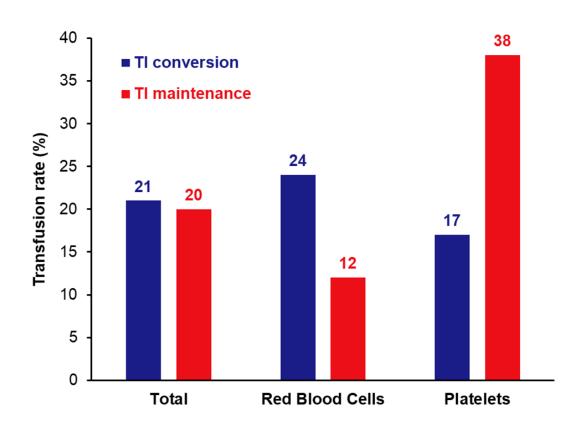

^aStable disease/no response/clinical benefit/progressive disease/not evaluable.

^bDefined as the expected duration of response (area under the Kaplan-Meier curve, up to the time point when ≥ 10% of patients remain at risk).

^cAmong CR/CRh responders evaluated for MRD (centrally tested).

Comparable CR/CRh Across Pre-specified Subgroups: R/R NPM1-m AML

 Comparable CR/CRh rates across pre-specified subgroups, regardless of prior HSCT, venetoclax, or FLT3/IDH co-mutations

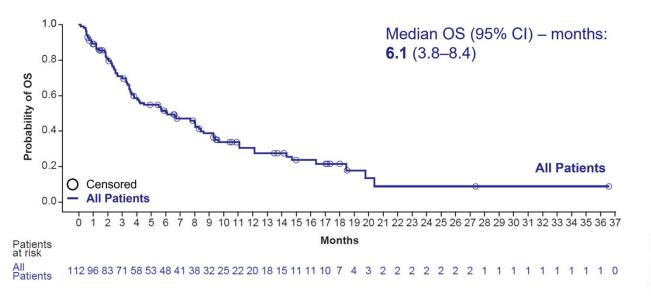

Transfusion Independence: R/R NPM1-m AML

Additional benefit beyond CR/CRh

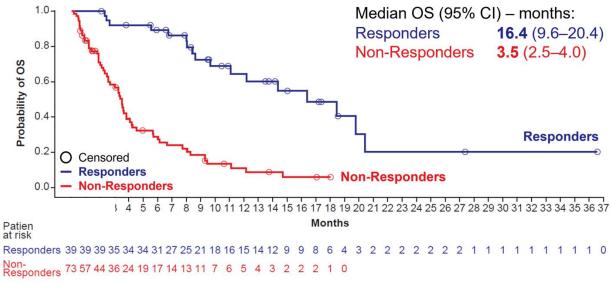
	Ziftomenib RP2D 600 mg QD Phase 2 (N = 92)
Total post-baseline transfusion independence	
Transfusion conversion (TD to TI) rate ^a , n/N (%) 95% CI ^b Maintenance of transfusion independence (TI to TI) rate ^c , n/N (%) 95% CI ^b	17/82 (21) 13–31 2/10 (20) 3–56
Post-baseline transfusion of red blood cells	
Transfusion conversion (TD to TI) rate ^a , n/N (%) 95% CI ^b Maintenance of transfusion independence (TI to TI) rate ^c , n/N (%) 95% CI ^b	18/75 (24) 15–35 2/17 (12) 2–36
Post-baseline transfusion of platelets	
Transfusion conversion (TD to TI) rate ^a , n/N (%) 95% CI ^b Maintenance of transfusion independence (TI to TI) rate ^c , n/N (%) 95% CI ^b	12/71 (17) 9–28 8/21 (38) 18–62

^aTransfusion conversion rate was defined as the number of patients who were TD at baseline but became TI post-baseline (ie, n) divided by the total number of patients who were TD at baseline.

Post-baseline transfusion period was defined as the 29 days post-first dose of ziftomenib until last dose prior to any new anti-cancer treatment (HSCT).



^bCl was calculated using the exact method based on binomial distribution.


^cTransfusion maintenance rate was defined as the number of patients who were TI at baseline and remained TI post-baseline (ie, n) divided by the total number of patients who were TI at baseline.

Overall Survival: R/R NPM1-m AML

All Patients (Pooled Phase 1b/2)

Responders* vs. Non-Responders

- Median OS: **6.1 months** (95% CI, 3.8–8.4)
- Note: 24 patients remained alive on-study, with 9 patients on-treatment

Safety & Tolerability of Ziftomenib in R/R NPM1-m AML (Safety Population)

Treatment-Emergent AEs in ≥ 20% of All Patients

		Ziftomenib RP2D 600 mg QD		
		Phase 2 (N = 92)		hase 1b/2 112)
Event, n (%)	Any Grade	Grade ≥ 3	Any Grade	Grade ≥ 3
Any AE	92 (100)	86 (93)	112 (100)	105 (94)
Hematologic AEs				
Anemia	20 (22)	18 (20)	25 (22)	23 (21)
Febrile neutropenia	24 (26)	24 (26)	25 (22)	25 (22)
Thrombocytopenia	18 (20)	18 (20)	22 (20)	22 (20)
Nonhematologic AEs				
Diarrhea	27 (29)	1 (1)	36 (32)	5 (4)
Nausea	23 (25)	1 (1)	31 (28)	1 (1)
Hypokalemia	22 (24)	12 (13)	29 (26)	13 (12)
Differentiation syndrome	23 (25)	14 (15) ^a	27 (24)	15 (13) ^a
Pruritus	21 (23)	0	26 (23)	0
Peripheral edema	23 (25)	0	25 (22)	0
Pneumonia	19 (21)	13 (14)	24 (21)	17 (15)

^aNo patients had Grade 4–5 differentiation syndrome.

Ziftomenib was well tolerated, with a safety profile consistent with previous studies, 1,2 including:

- Low rates of ziftomenib-related myelosuppression
- No clinically significant QTc prolongation:
 - 3 (3%) Patients*: 1 Gr2, 2 Gr3(all investigator-assessed)
- Differentiation syndrome: 15 (13%) Gr3;
 no Gr4–5 events

^{*}All 3 patients were on additional medications associated with QTc prolongation: 2 patients had electrolyte abnormalities and 1 patient had prior diagnosis of atrial fibrillation.

Safety & Tolerability of Ziftomenib in R/R NPM1-m AML (Safety Population)

Ziftomenib-Related AEs in ≥ 5% of All Patients

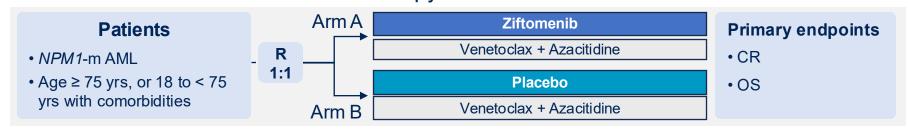
	Ziftomenib RP2D 600 mg QD			
	Phase 2 (N = 92)		Pooled Phase 1b/2 (N = 112)	
Event, n (%)	Any Grade	Grade ≥ 3	Any Grade	Grade ≥ 3
Any ziftomenib-related AE	64 (70)	37 (40)	77 (69)	45 (40)
Hematologic AEs				
Anemia	5 (5)	5 (5)	6 (5)	6 (5)
Neutropenia	6 (7)	6 (7)	6 (5)	6 (5)
Nonhematologic AEs				
Differentiation syndrome	22 (24)	14 (15)ª	26 (23)	15 (13)ª
Pruritus	15 (16)	0	16 (14)	0
Nausea	8 (9)	0	13 (12)	0
Diarrhea	8 (9)	0	10 (9)	2 (2)
Alanine aminotransferase increased	6 (7)	2 (2)	7 (6)	2 (2)
Decreased appetite	5 (5)	0	6 (5)	0

^aNo patients had Grade 4–5 differentiation syndrome.

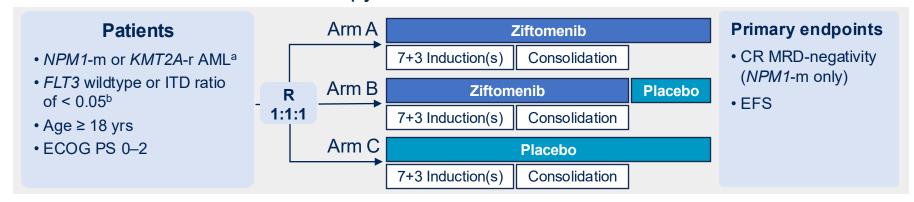
Ziftomenib was well tolerated, with a safety profile consistent with previous studies, 1,2 including:

- Low rates of ziftomenib-related myelosuppression
- No clinically significant QTc prolongation:
 - 3 (3%) Patients*: 1 Gr2, 2 Gr3(all investigator-assessed)
- Differentiation syndrome: 15 (13%) Gr3;
 no Gr4–5 events
- 3% Discontinuations due to ziftomenibrelated AEs

^{*}All 3 patients were on additional medications associated with QTc prolongation: 2 patients had electrolyte abnormalities and 1 patient had prior diagnosis of atrial fibrillation.


Conclusions

- In the pivotal KOMET-001 Phase 2 study, the primary endpoint was met
 - Ziftomenib achieved clinically meaningful, MRD-negative responses in this heavily pretreated R/R NPM1-m AML population
 - Similar response rates were seen, regardless of prior therapies, including HSCT and venetoclax
- Ziftomenib monotherapy was well tolerated with a safety profile consistent with previous studies
 - Low rates of ziftomenib-related myelosuppression
 - 3% Ziftomenib-related discontinuations
 - No clinically significant QTc prolongation
 - Differentiation syndrome was managed with protocol-specified mitigation strategies; no Grade 4–5 DS events
- NDA submitted for ziftomenib monotherapy as a new potential treatment option for R/R NPM1-m AML patients
- Ziftomenib combination studies are currently ongoing in both newly diagnosed and R/R AML (KOMET-007, KOMET-008)



KOMET-017: Phase 3 Ziftomenib Pivotal 1L Combination Studies

 Two independently powered, registrationenabling, randomized Phase 3 studies in fit and unfit Newly Diagnosed AML **KOMET-017-NIC:** Non-intensive therapy – Ziftomenib + venetoclax/azacitidine combo

KOMET-017-IC: Intensive therapy – Ziftomenib and 7+3 combo

^aExcluding partial tandem duplication. ^bUnless ineligible for *FLT3*-targeted therapy.

Expected to start in 2H 2025 (see EHA 2025 Trial-in-Progress abstract)

Acknowledgements

- The patients, their families, and their caregivers
- KOMET-001 study investigators and their study teams
- This study was sponsored by Kura Oncology, Inc.
- Medical writing support was provided by Oxford PharmaGenesis Inc., with funding from Kura Oncology, Inc.

Copies of this presentation obtained through Quick Response (QR) Code are for personal use only and may not be reproduced without permission from ASCO® or the author of this presentation.

