A phase 1 clinical trial of the novel farnesyl transferase inhibitor KO-2806 (FIT-001) alone or as part of combination therapy for advanced solid tumors

Glenn J Hanna¹, Douglas R Adkins², Jacob S Thomas³, Justine Y Bruce⁴, Manish R Patel⁵, Guri Songpav⁶, Jason Henry⁷, Nawal Bendris³, Zijing Zhang⁸, Amitava Mitra⁹, Andrew Saunders⁸, Stephen Dale⁹
Darco-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; 2Washington University School of Medicine, St Louis, MO, USA; 3University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA, USA; 4University of Wisconsin Carbone Cancer Center, Madison, WI, USA; 5Florida Cancer Specialists, Sarasota, FL, USA; 6AdventHealth Cancer Institute, Orlando, FL, USA; 7Sarah Cannon Research Institute at HealthONE, Denver, CO, USA; 8Kura Oncology, Inc., Boston, MA, USA

BACKGROUND

- RAS mutations are found in a wide range of human cancers, including lung, colon and pancreatic cancers; approximately 30% of human tumors express a mutation in a RAS gene.²
- HRAS, unlike NRAS and KRAS, is completely dependent on the post-translational modification farnesylation for downstream activity, making it particularly sensitive to farnesyl transferase inhibitors (FTIs).³,⁴
- Clinical trials (NCT03532927, NCT03719690) of the FTI tipifarnib in patients with NRAS-mutant (∼25%) and non-small squamous cell carcinoma (NSQCC) with high-voltage allele frequency mutations (20% or higher) had an objective response rate (ORR) of 52.8% or 30%, and favorable long-term outcome.⁵
- KO-2806 is a next-generation FTI with increased potency and improved pharmacokinetic (PK) properties compared with current FTIs; in preclinical studies, KO-2806 enhanced the antitumor activity of farnesyl transferase inhibitors by inhibiting farnesylnation of farnesyltransferase inhibitor-resistant prostate cancer cell lines.
- KRAS inhibitors in KRAS-m CDX and PDX models, including adagrasib in non-small cell lung cancer (NSQCC) and colorectal cancer (CRC) and pancreatic ductal adenocarcinoma (PDAC).⁶

OBJECTIVE

- To assess the safety, tolerability, PK, pharmacodynamics (PD) and preliminary antitumor activity of KO-2806, as a monotherapy and in combination, in adult patients with advanced solid tumors.

OUTCOME MEASURES

- Monotherapya
 - Objective: Phase 1a (dose escalation) consists of three arms with specific eligibility criteria shown in the table below.
 - Objective: Phase 1b (dose expansion) will enroll up to 20 patients; patients will be randomized to each of the three monotherapy arms in a 1:1:1 ratio.
- Combination therapy
 - Objective: Phase 1a (dose escalation) consists of three arms with specific eligibility criteria shown in the table below.
 - Objective: Phase 1b (dose expansion) will enroll up to 20 patients; patients will be randomized to each of the three combination arms in a 1:1:1 ratio.

STUDY POPULATION

- FIT-001 is a first-in-human, multicenter, open-label, phase 1a/b dose escalation/expansion clinical trial (NCT06694110) (Figure 1).
- Approximately 270 patients will be enrolled in phases 1a and 1b across 50 sites globally.
- Phase 1a (dose escalation) consists of three arms with specific eligibility criteria shown in the table below.
- Based on emerging data from phase 1a, up to two PD cohorts may be explored for each of the monotherapy, cCRC combination and NSQCC combination.
- In each cohort, 6–12 patients may be enrolled; taking paired fresh tumor biopsies at screening and on day 21 will be mandatory.

STUDY TOOLS

- ClinicalTrials.gov.
- Safety and Efficacy of Tipifarnib in Head and Neck Cancer With HRAS Mutations and/or Overexpression (NCT02383927, NCT03719690).

KEY ELIGIBILITY CRITERIA

<table>
<thead>
<tr>
<th>Key eligibility criteria</th>
<th>Arm 1 monotherapy</th>
<th>Arm 2 cCRCC combination (KO-2806 and cabozantinib)</th>
<th>Arm 3 NSQCC combination (KO-2806 and adagrasib)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>≥18 years</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diagnosis of advanced solid tumor</td>
<td>Histologically or cytologically confirmed advanced solid tumor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disease severity</td>
<td>Measurable disease per RECIST (version 1.1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arm-specific criteria</td>
<td>KRAS mutation and/or amplification (any solid tumor type), HRAS overexpression (NSQCC only), KRAS, HRAS and/or PIK3CA mutation and/or amplification (PDAC)</td>
<td>Have received at least one prior systemic therapy with an immunotherapy for locally advanced or metastatic CRC</td>
<td>Have received at least one prior systemic therapy for KRAS-G12C-m locally advanced or metastatic NSQCC</td>
</tr>
<tr>
<td>Prior or ongoing treatment conditions</td>
<td>Prior treatment with an FTI or HRAS inhibitor</td>
<td>Major surgery in the previous 25 days or still recovering from surgery</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spinal cord compression, leptomeningeal disease or clinically active CNS metastases</td>
<td>Active or documented autoimmune or inflammatory disorders in the previous 5 years (with exceptions)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inability to swallow, impairment of GI function or GI disease that may significantly alter the absorption of the trial drugs</td>
<td>Inadequate cardiac, pulmonary, vascular function, including mean QTcF ≥ 470 ms, presence of acute coronary syndrome in the past 6 months or class II or greater congestive heart failure</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other invasive malignancy in the previous 2 years</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CONCLUSIONS

- This study is exploring the safety and preliminary antitumor activity of KO-2806 for patients with advanced solid tumors; the results will inform the design of future trials.
- The data will also allow evaluation of the safety and preliminary antitumor activity of KO-2806 administered in combination with cabozantinib in cCRCC or adagrasib in NSQCC, and other potential combinations.

References

Acknowledgements

The authors wish to thank the patients and trial centers for their involvement in the study. The authors also wish to thank the following research staff for their valuable contributions: Eliza M. Wolf for data management, and the following research coordinators: Jennifer F. Wolter, Sarah R. Vaught, Amy M. Harrell, Jesus L. Duron, Daniel V. Ochoa, and Matthew J. Lilley. The authors thank Kura Oncology, Inc. for support and editorial assistance, which was funded by Kura Oncology, Inc., in accordance with Good Clinical Practice guidelines. This study was funded by Kura Oncology, Inc.

For further information, please contact: medicalaffairs@kuraoncology.com

Presented at the American Association for Cancer Research (AACR) Annual Meeting, April 5–10, 2024, San Diego, CA, USA.