Tipifarnib is Highly Active in HRAS-mutant Head and Neck Squamous Cell Carcinoma (HNSCC) Tumor Models

Mara Gilardi², Zhiyong Wang², Linda Kessler¹, Antonio Gualberto¹, Yi Liu¹, J. Silvio Gutkind², Francis Burrows¹ ¹Kura Oncology, Inc., San Diego, CA, USA, ²University of California, San Diego

WGA lectins (red) by confocal microscopy

Poster PB-083, EORTC-NCI-AACR Molecular Targets and Cancer Therapeutics Symposium November13-16th, 2018

- HRAS is a targetable oncogene in squamous cell carcinomas using tipifarnib Tipifarnib prevents HRAS prenylation and membrane insertion
- HRAS-mutant cells are highly sensitive in vitro under both adherent and anchorage-independent conditions
- Tipifarnib induced stasis or regression in HRAS-mutant HNSCC xenograft models, independently of *HRAS* genotype
- Antitumor activity *in vivo* is associated with inhibition of MAPK and PI3KmTOR signaling, cell cycle arrest and robust activation of apoptosis
- tipifarnib *in vivo*

inimals dosed orally at 80mg/kg

Tipifarnib is under active clinical evaluation in HRAS-mutant SCC including HNSCC

TIPIFARNIB INHIBITS ONCOGENIC SIGNALING AND PROLIFERATION AND INDUCES APOPTOSIS IN HRAS-MUTANT HNSCC XENOGRAFTS IN VIVO

TIPIFARNIB INHIBITS ANGIOGENESIS IN VITRO AND IN VIVO

CONCLUSIONS

Direct antitumor effects may be enhanced by antiangiogenic activity of