Combination of tipifarnib with KRAS^{G12C} inhibitors to prevent adaptive resistance

Hetika Vora Patel¹, Alison Smith¹, Stacia Chan¹, Linda Kessler¹, Francis Burrows¹, and Shivani Malik¹

¹Kura Oncology, Inc, San Diego, CA

Abstract #1079

BACKGROUND

Selective, irreversible KRAS^{G12C} inhibitors, including MRTX849 (adagrasib) and AMG510 (sotorasib), exhibit clinical activity with response rates of 45% and 37%, respectively, in patients with KRAS^{G12C}-NSCLC^{1,2}. However, feedback reactivation of mTOR signaling pathways seems to limit therapeutic efficacy of single agent KRAS^{G12C} inhibitors, warranting rational combination strategies^{1,2}. We have shown tipifarnib, a farnesyltransferase inhibitor, blocks compensatory feedback reactivation through inhibition of mTOR signaling³. Based on our previous work, we hypothesize that tipifarnib in combination with KRAS^{G12C} inhibitors could potentially inhibit mTOR pathway reactivation, thus enhancing single agent efficacy and durability in KRAS^{G12C}-NSCLC. In this study, we utilize xenograft models to evaluate the therapeutic effects of the combination of tipifarnib with a KRAS^{G12C} inhibitor, including adagrasib and sotorasib, in KRAS^{G12C}-NSCLC.

RESULTS

Combination of tipifarnib and KRAS^{G12C} inhibitors decrease spheroid growth of KRAS^{G12C} NSCLC cell lines in a dose-dependent manner.

CONCLUSIONS

• Combination of tipifarnib with KRAS^{G12C} inhibitors, such as adagrasib and sotorasib, leads to significant tumor regression in KRAS^{G12C}-NSCLC CDX and PDX models.

Tipifarnib suppresses the feedback reactivation of mTOR signaling at the level of p-S6 (S235/236) that occurs after single-agent KRAS^{G12C} inhibitor treatment.

Further in vivo and in vitro mechanistic studies are ongoing to determine MOA of tipifarnib in the context of combination with KRAS^{G12C} inhibitors in KRAS^{G12C}-NSCLC.

REFERENCES

Figure 1. Tipifarnib and KRAS^{G12C} inhibitors, adagrasib and sotorasib, inhibit the spheroid growth of KRAS^{G12C}-NSCLC cell lines. A-D. NSCLC H122 KRAS^{G12C}-NSCLC cell line was treated with tipifarnib and (A) adagrasib or (D) sotorasib, and NCI-H1792 KRAS^{G12C}-NSCLC cell line was treated with tipifarnib and (B) adagrasib or (E) sotorasib. A549 KRAS^{G12C}-NSCLC cell line was used as a control for KRAS^{G12C} inhibitor treatment, and this control cell line was treated with tipifarnib and (C) adagrasib or (F) sotorasib.

Figure 2. Anti-tumor efficacy in KRAS^{G12C}-NSCLC xenograft models with combination of tipifarnib with KRAS^{G12C} inhibitors. LUS122 KRAS^{G12C}-NSCLC PDX model had significant tumor regressions with (A) tipifarnib, 60 mg/kg, BID + adagrasib, 100 mg/kg, OD and (B) tipifarnib, 60 mg/kg, BID + sotorasib, 100 mg/kg, OD compared to vehicle control. NCI-H122 KRAS^{G12C}-NSCLC CDX model had significant tumor regressions with (C) tipifarnib, 60 mg/kg, BID + adagrasib, 100 mg/kg, OD and (D) tipifarnib, 60 mg/kg, BID + sotorasib, 100 mg/kg, OD compared to vehicle control and single-agent treatment groups. (E) Immunoblot analysis was done for the NCI-H122 KRAS^{G12C}-NSCLC CDX tumors. Combination of tipifarnib with adagrasib caused an increase in the apoptotic marker cleaved caspase 3 (CC3) as well as decreases in the mTOR signaling pathway markers, p-S6 and p-4EBP1, compared to single-agent treatments.

Figure 3. Combination of tipifarnib with a KRAS^{G12C} inhibitor suppresses mTOR signaling reactivation and promotes cell apoptosis. Combination of tipifarnib with sotorasib treatment suppresses mTOR signaling more potently and durably than single agent sotorasib. Immunoblot of p-4EBP1, p-akt and total mTOR showed in NCI-H122 KRAS^{G12C}-NSCLC xenograft model had significant tumor regressions with (C) tipifarnib, 60 mg/kg, BID + adagrasib, 100 mg/kg, QD compared to vehicle control and single-agent treatment groups. (D) tipifarnib, 60 mg/kg, BID + sotorasib, 100 mg/kg, QD compared to vehicle control. NCI-H1792 KRAS^{G12C}-NSCLC xenograft model had significant tumor regressions with (A) tipifarnib, 60 mg/kg, BID + adagrasib, 100 mg/kg, QD and (B) tipifarnib, 60 mg/kg, BID + sotorasib, 100 mg/kg, QD compared to vehicle control and single-agent treatment groups. (E) Statistical significance (p<0.05; *p<0.01; **p<0.001; ***p<0.0001).