

Farnesyl Transferase Inhibitors-Evolution from Targeting HRAS to Overcoming Adaptive Resistance to Targeted Therapies

Shivani Malik

5th RAS-Targeted Drug Development Summit September 26-28, 2023

Disclosures

-Employee of Kura Oncology, Inc.

FTIs and the RAS Family of Oncogenes

- Tipifarnib-first-in-class FTI, originally developed to target KRAS
- Upon farnesyl transferase inhibition, KRAS and NRAS become geranylgeranylated
- HRAS is an obligate farnesylation target-it lacks the geranylgeranylation rescue pathway

Tipifarnib Demonstrates Durable Anti-Tumor Activity in Patients with Recurrent or Metastatic HRAS-Mutant HNSCC

Patients with high variant allele frequency (VAF, ≥20%) mHRAS HNSCC

Red, PR; blue, SD; green, not evaluable for efficacy; diamond, patient initiated treatment at 600 mg twice a day; cross, patient withdrew consent; arrow in bar, start of response; arrow, active treatment. Numbers at the end of the bars represent VAF for each patient.

Ho, et al. J Clin Oncol. 2021 June 10;39(17):1856-1864. doi: 10.1200/JCO.20.02903. Ho et al. ASCO 2020 #6504 (preliminary exploratory data as of 9/30/19) Efficacy-evaluable patients with HRAS mutant variant allele frequency (VAF) \geq 20% and serum albumin \geq 3.5 g/dL, or HRAS VAF \geq 35% One patient treated off-protocol through compassionate use

Comprehensive genomic profiling using Tempus XT reveals HRAS- and/or PIK3CA-dependence in HNSCC

HRAS-PIK3CA crosstalk in HNSCC - Tipifarnib blocks hyperactivated growth factor signaling at multiple nodes, including HRAS and RHEB

Combined Tipifarnib and Alpelisib Inhibits mTOR Reactivation for the Entire Dosing Interval

CAL33 – *PIK3CA* H1047R

Reference: Smith et al., 2023, Tipifarnib potentiates the antitumor effects of PIK3Ka inhibition in PIK3CA- and HRAS- dysregulated HNSCC via convergent inhibition of mTOR activity. Cancer Res, CAN-23-0282

RHEB, An Obligately Farnesylated Protein, is a Key FTI Target

Tipifarnib blocks localization of RHEB to the lysosomes

RHEB depletion enhances mTOR inhibition <u>when</u> <u>combined with alpelisib</u> in PIK3CA mutant HNSCC cells

Durable Clinical Response Observed in Patient with PIK3CA-dependent HNSCC

Hilar Lymph Node

Right Middle Lobe Lung

Right Upper Lobe Lung

- 35yo, male, nonsmoker, HPV16 positive
- SCC of tonsil Stage III cT4N2M0; PD-L1 CPS = 60
- Prior Treatments
- CDDP/rad for 1 mo (Nov-Dec2019), BOR UNK
- Cemiplimab/ISA101b (Jun-Nov2021), BOR PD
- **PIK3CA R88Q mutation** (44%) and HRAS OE (3+ staining in 100% of tumor cells) by IHC from May 2021 biopsy
- DL1 tipifarnib, DL2 alpelisib; completed 6 cycles
- G1/2 TRAE, G3 lipase elevation; presented clinical benefit and improvement in respiratory symptoms
- 81% reduction in target lesions after 1 cycle of treatment
- 84% reduction in target lesions after 3 cycles (BOR)
- Continued on-study for >27 weeks maintaining QoL

Mechanism-Based Combinations Needed to Fully Realize the Potential of Breakthrough KRAS^{G12C} Inhibitors

pERK inhibition by KRAS^{G12C} inhibitors hyperactivates RTK signaling leading to ERK-RSK and/or mTOR-S6 pathway activation

Next-Generation FTI

- FTIs represent an attractive therapeutic and commercial opportunity in oncology with compelling options in combination with other targeted therapies
- KO-2806 is a potent next-generation FTI designed to improve upon potency, pharmacokinetic and physicochemical properties of earlier FTI drug candidates
- IND application cleared by FDA; on track to initiate Phase 1 study of KO-2806 in 2H 2023

Tumor Growth Inhibition in KRAS^{G12C}-Mutant NSCLC PDX & CDX Models

***- *p*<0.001

Combination of KO-2806 and adagrasib has superior antitumor effect compared with adagrasib monotherapy

KO-2806 Deepens Signaling Inhibition by Adagrasib in KRAS^{G12C}-Mutant NSCLC Tumor Spheroids: Inhibition of MAPK Signaling

KO-2806 Deepens Signaling Inhibition by Adagrasib in KRAS^{G12C}-Mutant NSCLC Tumor Spheroids: Strong Inhibition of mTOR Signaling

KO-2806 Deepens Signaling Inhibition by Adagrasib in KRAS^{G12C}-Mutant NSCLC Tumor Spheroids: HER3 InhibitionRTK inhibition

KO-2806 Deepens Signaling Inhibition by Adagrasib in KRAS^{G12C}-Mutant NSCLC Tumor Spheroids: Induction of Cell Cycle Arrest and Apoptosis

KO-2806-Adagrasib Combination Reduces mTOR and RSK Activation, Increases Apoptosis and Blocks Proliferation in vivo

NCI-H2122 CDX Day 3 24 hr

KO-2806-Adagrasib Combination Increases the Depth of Response Compared to Adagrasib Monotherapy

KO-2806-Adagrasib Combination Increases the Duration of Response Compared to Adagrasib Monotherapy

NCI-H2030

Summary

• FTIs have the promise to enhance antitumor activity of targeted therapies in solid tumors

- FTIs in combination with KRAS^{G12C} inhibitors drive tumor regressions and durable responses in preclinical NSCLC models
- First demonstration of a durable clinical response with combination of FTI tipifarnib with alpelisib in patient with *PIK3CA*-mutant HNSCC
- FTIs are efficacious and tolerable and work by blocking oncogenic signaling at multiple nodes to enhance antitumor efficacy in combinations
 - FTIs potently inhibit adaptive mTORC1 signaling (S6K and 4EBP1) when combined with appropriate partner drugs in biomarker-defined tumors.
 - In addition to mTOR, FTIs target additional key oncogenic nodes in the adaptive response to KRAS inhibitors, including upstream RTK signaling and HRAS
 - FTIs are likely to exhibit less on-target toxicity compared to both mTOR kinase inhibitors and rapalogs by sparing mTORC2

Acknowledgements

The patients and their families

Kura Oncology Translational Research group

Francis Burrows Hetika Vora Patel Stacia Chan Alison Smith Linda Kessler Lyn Gatchalian Yahu Liu Asako McCloskey Quinn Reilley Betsy Gonzalez

Patel H et al. The next generation farnesyltransferase inhibitor, KO-2806, blocks oncogenic signaling at multiple nodes to enhance the antitumor efficacy of KRAS^{G12C} inhibitor adagrasib in KRAS^{G12C} NSCLC (B025)

Smith A et al. The next-generation farnesyltransferase inhibitor KO-2806 constrains compensatory signaling reactivation to deepen responses to KRAS^{G12D} inhibition (B023)

Gatchalian J et al. KO-2806, a next-generation farnesyltransferase inhibitor, potentiates the antitumor activity of cabozantinib in RCC (B024)

