The next generation farnesyltransferase inhibitor, KO-2806, blocks oncogenic signaling at multiple nodes to enhance the antitumor efficacy of KRAS_{G12C} inhibitor adagrasib in KRAS_{G12C} non-small cell lung carcinoma

Hetika Vora Patel, Alison Smith, Stacia Chan, Linda Kessler, Francis Burrows, and Shivani Malik
Kura Oncology, Inc., San Diego, CA

BACKGROUND

Emerging clinical and preclinical data have shown that responses to KRAS^{G12C} inhibition are limited by the activation of compensatory signaling proteins, including receptor tyrosine kinases (RTKs) and mTOR. Combination therapeutic strategies co-targeting these nodes are needed to fully realize the potential of breakthrough KRAS^{G12C}-selective inhibitors. We propose that, given its multipronged mechanism of action, KO-2806, a next-generation farnesyltransferase inhibitor (FTI), is a uniquely suited combination partner for KRAS^{G12C} inhibitors. Here, we evaluate the therapeutic potential and mechanistic basis of combined KO-2806 and adagrasib in preclinical models of KRAS^{G12C} non-small cell lung cancer (NSCLC).

RESULTS

Combination of KO-2806 with adagrasib causes tumor regressions in cell-derived and patient-derived KRAS^{G12C} NSCLC xenografts

CONCLUSIONS

- Combination of the next generation FTI, KO-2806, with the KRAS^{G12C} inhibitor, adagrasib, caused significant tumor regressions in KRAS^{G12C} NSCLC xenografts.
- Combination of KO-2806 with adagrasib enhances the depth and duration of response compared with single-agent adagrasib treatment.
- KO-2806 deepens signaling inhibition by adagrasib through inhibiting MAPK and mTOR signaling in KRAS^{G12C} NSCLC tumors.
- Knockdown of RHEB partially mimics the effects of KO-2806 in combination with adagrasib.